

Agostinho Neto University

College of Sciences

Master in Mathematics and Applications

Test 1: Wavelets and signal processing 14 / 07 / 2021

NAME:

N. 1	N. 2	N. 3	N. 4	TOTAL

1. (5 points)

(a) Give the definition of inner product \langle , \rangle in a vector space \mathbb{H} . Let $\alpha = (\alpha_n)_{n=1}^{\infty}$ be a sequence of positive real numbers. Consider

$$\ell^2_{\alpha}(\mathbb{N}) = \{ z = (z_n)_{n=1}^{\infty} : z_n \in \mathbb{C} \text{ and } \| z \|_{\ell^2_{\alpha}} = \left(\sum_{n=1}^{\infty} |z_n|^2 \alpha_n \right)^{1/2} < \infty \}.$$

- (b) Prove that $\langle z, w \rangle = \sum_{n=1}^{\infty} z_n \overline{w_n} \alpha_n$ defines an inner product in $\ell^2_{\alpha}(\mathbb{N})$.
- (c) Find and orthonormal basis of $\ell^2_{\alpha}(\mathbb{N})$. (You must show that your example is an orthonormal basis)
- **2.** (5 points)
 - (a) Give the definition of orthonormal system in a Hilbert space $(\mathbb{H}, \langle , \rangle)$.
 - (b) Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal system in a Hilbert space $(\mathbb{H}, \langle , \rangle)$. Prove Bessel's inequality, that is, for all $x \in \mathbb{H}$,

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2 \,.$$

Continues in reverse side

3. (5 points) Let $(\mathbb{H}, \langle , \rangle)$ be a Hilbert space and $\{e_n\}_{n=1}^{\infty}$ a sequence of elements of \mathbb{H} of norm 1, that is, $||e_n|| = 1$ for all $n \in \mathbb{N}$. Suppose that for all $x \in \mathbb{H}$,

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 = ||x||^2.$$

- (a) Show that $\{e_n\}_{n=1}^{\infty}$ is an orthonormal system of \mathbb{H} .
- (b) For $x \in \mathbb{H}$ and $N \in \mathbb{N}$ define $x_N = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$. Prove that $\{x_N\}_{N=1}^{\infty}$ is a Cauchy sequence in \mathbb{H} . (Hint: use that for $x \in \mathbb{H}$, $||x|| = \sup_{\|y\|=1} |\langle x, y \rangle|$)

4. (5 points)

(a) Give the definitions of Fourier coefficients $\widehat{f}(k)$, $k \in \mathbb{Z}$, and Fourier series of a 1-periodic function $f \in L_p^1([-1/2, 1/2])$.

Let

$$f(x) = x^2, \quad -\frac{1}{2} \le x < \frac{1}{2},$$

extended to \mathbb{R} with period one.

(b) Compute its Fourier coefficients $\widehat{f}(k)$ for all $k \in \mathbb{Z}$, starting with $\widehat{f}(0)$.