Hilbert spaces

1. (a) Give the definition of inner product \langle,$\rangle in a vector space \mathbb{H}$. Give also a precise definition for $(\mathbb{H},\langle\rangle$,$) to be a Hilbert space and define the norm of an element x \in \mathbb{H}$.
(b) Let $(\mathbb{H},\langle\rangle$,$) be a pre-Hilbert space. Prove that for x, y \in \mathbb{H}$,

$$
2\|x\|^{2}+2\|y\|^{2}=\|x+y\|^{2}+\|x-y\|^{2} .
$$

(c) Let \mathbb{H} be a vector space with a norm that satisfies the equation in part (b). Define

$$
B(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) .
$$

Prove that

$$
2 B(x, y)=B(x+z, y)+B(x-z, y) .
$$

2. Let $(\mathbb{H},\langle\rangle$,$) be a Hilbert space and \left\{e_{n}\right\}_{n=1}^{\infty}$ a sequence of elements of \mathbb{H} or norm 1 , that is $\left\|e_{n}\right\|=1$, for all $n \in \mathbb{N}$. Suppose that for all $x \in \mathbb{H}$,

$$
\sum_{n=1}^{\infty}\left|\left\langle x, e_{n}\right\rangle\right|^{2}=\|x\|^{2}
$$

(a) Prove that $\left\{e_{n}\right\}_{n=1}^{\infty}$ is and orthonormal system of \mathbb{H}.
(b) For $x \in \mathbb{H}$ and $N \in \mathbb{N}$ define $x_{N}=\sum_{n=1}^{N}\left\langle x, e_{n}\right\rangle e_{n}$. Prove that $\left\{x_{N}\right\}_{N=1}^{\infty}$ is a Cauchy sequence in \mathbb{H}. Hint: Use that for $x \in \mathbb{H},\|x\|=\sup _{\|y\|=1}|\langle x, y\rangle|$.
3. In $L^{2}([-1,1])$ consider the inner product given by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) \overline{g(x)} d x
$$

and the functions $p_{0}(x)=1, p_{1}(x)=x, p_{2}(x)=x^{2}$ defined in $[-1,1]$. Find real numbers a and b such that the function $g(x)=a p_{0}(x)+b p_{1}(x)+p_{2}(x)$ is orthogonal to $p_{0}(x)$ and $p_{1}(x)$.

Fourier coefficients

4. (a) Give the definition of Fourier coefficients and Fourier series of a function $f \in$ $L_{p}^{2}([-1 / 2,1 / 2])$.
(b) Compute the Fourier coefficients of the function $f \in L_{p}^{2}([-1 / 2,1 / 2])$ given by

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & -\frac{1}{2} \leq x \leq 0 \\
0 & \text { if } & 0<x \leq \frac{1}{2}
\end{array}\right.
$$

and extended to \mathbb{R} with period 1 . Start computing $\widehat{f}(0)$.
(c) Compute the Fourier coefficients of the function $g \in L_{p}^{2}([-1 / 2,1 / 2])$ given by

$$
g(x)=\left\{\begin{array}{lll}
-x & \text { if } & -\frac{1}{2} \leq x \leq 0 \\
x & \text { if } & 0<x \leq \frac{1}{2}
\end{array}\right.
$$

and extended to \mathbb{R} with period 1 . Start computing $\widehat{g}(0)$.

Fourier transform

5. (a) Prove that if $f \in L^{1}(\mathbb{R})$ and $x f \in L^{1}(\mathbb{R})$, then

$$
\frac{d}{d w} \mathcal{F}(f)(w)=\mathcal{F}(-2 \pi i x f)(w)
$$

Let $f(x)=e^{-4 \pi^{2} x^{2}}$ that verifies $\int_{\mathbb{R}} e^{-4 \pi^{2} x^{2}} d x=\frac{1}{2 \sqrt{\pi}}$.
(b) Prove that $x f \in L^{1}(\mathbb{R})$ and, using part (a), show that

$$
\frac{d}{d w} \mathcal{F}(f)(w)=-\frac{1}{2} w \mathcal{F}(f)(w) .
$$

Hint: integrate by parts.
(c) Deduce from (b) that $\mathcal{F}(f)(w)=\frac{1}{2 \sqrt{\pi}} e^{-w^{2} / 2}$.
6. (a) Define the convolution, $f * g$, of two functions f and g define on the real line.

Let $f=\chi_{[0,1]}$ and $g=\chi_{[1,2]}$.
(b) Compute the $\mathcal{F} f$ and $\mathcal{F} g$, the Fourier transforms of f and g.
(c) Compute the convolution, $f * g$, of f and g, and also, $\mathcal{F}(f * g)$, the Fourier transform of the convolution $f * g$.

Orthonormal systems and basis

7. By Corollary 1.6.5, the set $\left\{e_{n}(x)=e^{2 \pi i n x}: n \in \mathbb{Z}\right\}$ is complete in $L_{p}^{2}([0,1])$. Hence, by Theorem 1.4.9, for all $f \in L_{p}^{2}([0,1])$,

$$
\|f\|_{L_{p}^{2}([0,1])}^{2}=\sum_{n=-\infty}^{\infty}\left|\left\langle f, e_{n}\right\rangle\right|_{L_{p}^{2}([0,1])}^{2} \quad \text { (Plancherel identity). }
$$

Prove that the set

$$
\left\{u_{n}(x)=\frac{1}{\sqrt{N}} e^{2 \pi i \frac{n}{T} x}: n \in \mathbb{Z}\right\}
$$

is complete in $L_{p}^{2}([a, b])$, where $T=b-a$. Hint: for any $g \in L_{p}^{2}([a, b])$ define $f(x)=g(a+T x)$; prove that $f \in L_{p}^{2}([0,1])$ and use Plancherel identity for f to prove Plancherel identity for g, that is,

$$
\|g\|_{L_{p}^{2}([a, b])}^{2}=\sum_{n=-\infty}^{\infty}\left|\left\langle g, u_{n}\right\rangle\right|_{L_{p}^{2}([a, b])}^{2} .
$$

8. It was proved in class (Proposition 3.1.3) that the set $\left\{C_{n}(x)=\sqrt{2} \cos \frac{\pi(2 k+1) x}{2}\right\}_{k=1}^{\infty}$ is an orthonormal basis of $L^{2}([0,1])$.
(a) Write Plancherel identity for this orthonormal basis.

Let $M \in \mathbb{N}, M>1$ and consider the set

$$
\left\{U_{n}(x)=\sqrt{\frac{2}{M}} \cos \frac{\pi(2 k+1) x}{2 M}\right\}_{k=1}^{\infty}
$$

(b) Prove that $\left\{U_{n}(x)\right\}_{k=1}^{\infty}$ is an orthonormal system of $L^{2}([0, M])$.
(c) Show that the system $\left\{U_{n}(x)\right\}_{k=1}^{\infty}$ is complete in $L^{2}([0, M])$. Hint: use part (a)
9. (a) Write the statement of the Whittaker-Shannon sampling theorem when $f \in L^{2}(\mathbb{R})$ and supp $\mathcal{F} f \subset\left[-\frac{1}{2}, \frac{1}{2}\right]$.
(b) Let $f \in L^{2}(\mathbb{R})$ be given by

$$
\mathcal{F} f(w)=\left\{\begin{array}{ccc}
2 w+1 & \text { if } & -\frac{1}{2} \leq x \leq 0 \\
-2 w+1 & \text { if } & 0<x \leq \frac{1}{2} \\
0 & & \text { otherwise }
\end{array}\right.
$$

Compute f using \mathcal{F}^{-1}.
(c) Write Whittaker-Shannon sampling theorem for the function f given in (b).

Discrete transformations and bases

10. Let $f=(f(n))_{n=0}^{N-1}$ be a discrete signal of size N.
(a) Give the definition of the discrete Fourier transform (DFT) of f.
(b) Describe the fast Fourier transform (FFT) algorithm to compute DFT.
(c) Let $f=(f(0), f(1), f(2), f(3))=(1,0,1,0)$ be a discrete signal of size 4 . Compute DFT with the definition given in part (a).
(d) For f as in part (c). Compute DFT using the FFT algorithm described in part (b).
11. (a) Describe the discrete cosine-I basis (DC-I) for the space of signals of size N and give the definition of the discrete cosine-I transform (DCT-I).
(b) Compute de DCT-I of the signal $f=(f(0), f(1), f(2), f(3))=(1,0,1,0)$.
12. Let
X = MASTERMATHEMATICS
be a text made up with the letters of the alphabet

$$
\mathcal{S}=\{\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{C}, \mathrm{H}, \mathrm{M}, \mathrm{R}, \mathrm{~S}, \mathrm{~T}\}
$$

(a) Compute $\mathcal{E}(X)$, the entropy of X .
(b) Find a Huffman code for X.

Orthonormal wavelets

13. Let $\varphi(x)=\frac{1}{3} \chi_{[0,3)}$ be a function defined on \mathbb{R}.
(a) Show that $\mathcal{F} f(0)=1$ and $\mathcal{F} \varphi(w)=e^{-3 \pi i w} \frac{\sin 3 \pi w}{3 \pi w}$ if $w \neq 0$.
(b) Define $h(w)$ by the formula $\mathcal{F} \varphi(2 w)=h(w) \mathcal{F} \varphi(w)$. Show that $h(w)=\frac{1+e^{-6 \pi i w}}{2}$ and that $|h(w)|^{2}+|h(w+1 / 2)|^{2}=1$ for all $w \in \mathbb{R}$.
(c) Define

$$
h[k]=\left\langle\frac{1}{2} \varphi\left(\frac{x}{2}\right), T_{3 k} \varphi\right\rangle=\int_{-\infty}^{\infty} \frac{1}{2} \varphi\left(\frac{x}{2}\right) \overline{\varphi(x-3 k)} d x .
$$

Show that $h[0]=\frac{1}{6}=h[1]$, and $h[k]=0$ if $k \neq 0,1$.
14. (a) Give the definition of Multiresolution Analysis (MRA) $\left(\left\{V_{j}\right\}_{j \in \mathbb{Z}}, \varphi\right)$.
(b) Consider $\varphi_{j, k}(x)=D_{2^{j}} T_{k} \varphi(x)$. Find $\mathcal{F}\left(\varphi_{j, k}\right)(w)$.
(c) Prove that $\left\{\varphi_{j, k}: k \in \mathbb{Z}\right\}$ is and orthonormal basis of V_{j} using that $\left\{\varphi_{0, k}: k \in \mathbb{Z}\right\}$ is and orthonormal basis of V_{0}.
15. (a) Explain the way S. Mallat produced orthonormal wavelets in $L^{2}(\mathbb{R})$ starting with a Multiresolution Analysis (MRA) $\left(\left\{V_{j}\right\}_{j \in \mathbb{Z}}, \varphi\right)$.
(b) Let $\varphi(x)=\chi_{[2,3]}$ be the scaling function fo an MRA. Find the low-pass filter $h(w)$ associated to φ.
(c) Find the high-pass filter $g(w)$ associated to φ given by $g(w)=e^{-2 \pi i w} \overline{h\left(w+\frac{1}{2}\right)}$.
(d) Find the orthonormal wavelet ψ associated to the scaling function φ an the high-pass filter $g(w)$.

