REVIEW EXERCISES

HILBERT SPACES

1. (a) Give the definition of inner product \langle , \rangle in a vector space \mathbb{H} . Give also a precise definition for $(\mathbb{H}, \langle , \rangle)$ to be a Hilbert space and define the norm of an element $x \in \mathbb{H}$.

(b) Let $(\mathbb{H}, \langle , \rangle)$ be a pre-Hilbert space. Prove that for $x, y \in \mathbb{H}$,

$$2||x||^{2} + 2||y||^{2} = ||x + y||^{2} + ||x - y||^{2}.$$

(c) Let \mathbb{H} be a vector space with a norm that satisfies the equation in part (b). Define

$$B(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2).$$

Prove that

$$2B(x,y) = B(x+z,y) + B(x-z,y).$$

2. Let $(\mathbb{H}, \langle , \rangle)$ be a Hilbert space and $\{e_n\}_{n=1}^{\infty}$ a sequence of elements of \mathbb{H} or norm 1, that is $||e_n|| = 1$, for all $n \in \mathbb{N}$. Suppose that for all $x \in \mathbb{H}$,

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 = ||x||^2.$$

(a) Prove that $\{e_n\}_{n=1}^{\infty}$ is and orthonormal system of \mathbb{H} .

(b) For $x \in \mathbb{H}$ and $N \in \mathbb{N}$ define $x_N = \sum_{n=1}^N \langle x, e_n \rangle e_n$. Prove that $\{x_N\}_{N=1}^\infty$ is a Cauchy sequence in \mathbb{H} . *Hint: Use that for* $x \in \mathbb{H}$, $||x|| = \sup_{\|y\|=1} |\langle x, y \rangle|$.

3. In $L^2([-1,1])$ consider the inner product given by

$$\langle f,g \rangle = \int_{-1}^{1} f(x) \overline{g(x)} dx$$
,

and the functions $p_0(x) = 1$, $p_1(x) = x$, $p_2(x) = x^2$ defined in [-1, 1]. Find real numbers a and b such that the function $g(x) = ap_0(x) + bp_1(x) + p_2(x)$ is orthogonal to $p_0(x)$ and $p_1(x)$.

FOURIER COEFFICIENTS

4. (a) Give the definition of Fourier coefficients and Fourier series of a function $f \in L^2_p([-1/2, 1/2])$.

(b) Compute the Fourier coefficients of the function $f \in L^2_p([-1/2, 1/2])$ given by

$$f(x) = \begin{cases} 1 & \text{if } -\frac{1}{2} \le x \le 0\\ 0 & \text{if } 0 < x \le \frac{1}{2} \end{cases}.$$

and extended to \mathbb{R} with period 1. Start computing $\widehat{f}(0)$.

(c) Compute the Fourier coefficients of the function $g \in L^2_p([-1/2, 1/2])$ given by

$$g(x) = \begin{cases} -x & \text{if } -\frac{1}{2} \le x \le 0\\ x & \text{if } 0 < x \le \frac{1}{2} \end{cases}$$

and extended to \mathbb{R} with period 1. Start computing $\widehat{g}(0)$.

FOURIER TRANSFORM

5. (a) Prove that if $f \in L^1(\mathbb{R})$ and $xf \in L^1(\mathbb{R})$, then

$$\frac{d}{dw}\mathcal{F}(f)(w) = \mathcal{F}(-2\pi i x f)(w)$$

Let $f(x) = e^{-4\pi^2 x^2}$ that verifies $\int_{\mathbb{R}} e^{-4\pi^2 x^2} dx = \frac{1}{2\sqrt{\pi}}$.

(b) Prove that $xf \in L^1(\mathbb{R})$ and, using part (a), show that

$$\frac{d}{dw}\mathcal{F}(f)(w) = -\frac{1}{2}w\mathcal{F}(f)(w) \,.$$

Hint: integrate by parts.

- (c) Deduce from (b) that $\mathcal{F}(f)(w) = \frac{1}{2\sqrt{\pi}}e^{-w^2/2}$.
- **6.** (a) Define the convolution, f * g, of two functions f and g define on the real line.
- Let $f = \chi_{[0,1]}$ and $g = \chi_{[1,2]}$.
- (b) Compute the $\mathcal{F}f$ and $\mathcal{F}g$, the Fourier transforms of f and g.

(c) Compute the convolution, f * g, of f and g, and also, $\mathcal{F}(f * g)$, the Fourier transform of the convolution f * g.

ORTHONORMAL SYSTEMS AND BASIS

7. By Corollary 1.6.5, the set $\{e_n(x) = e^{2\pi i n x} : n \in \mathbb{Z}\}$ is complete in $L_p^2([0,1])$. Hence, by Theorem 1.4.9, for all $f \in L_p^2([0,1])$,

$$||f||^{2}_{L^{2}_{p}([0,1])} = \sum_{n=-\infty}^{\infty} |\langle f, e_{n} \rangle|^{2}_{L^{2}_{p}([0,1])} \qquad \text{(Plancherel identity)}.$$

Prove that the set

$$\{u_n(x) = \frac{1}{\sqrt{N}}e^{2\pi i \frac{n}{T}x} : n \in \mathbb{Z}\}$$

is complete in $L_p^2([a, b])$, where T = b - a. Hint: for any $g \in L_p^2([a, b])$ define f(x) = g(a + Tx); prove that $f \in L_p^2([0, 1])$ and use Plancherel identity for f to prove Plancherel identity for g, that is,

$$||g||^{2}_{L^{2}_{p}([a,b])} = \sum_{n=-\infty}^{\infty} |\langle g, u_{n} \rangle|^{2}_{L^{2}_{p}([a,b])}.$$

8. It was proved in class (Proposition 3.1.3) that the set $\left\{C_n(x) = \sqrt{2}\cos\frac{\pi(2k+1)x}{2}\right\}_{k=1}^{\infty}$ is an orthonormal basis of $L^2([0,1])$.

(a) Write Plancherel identity for this orthonormal basis.

Let $M \in \mathbb{N}, M > 1$ and consider the set

$$\left\{U_n(x) = \sqrt{\frac{2}{M}}\cos\frac{\pi(2k+1)x}{2M}\right\}_{k=1}^{\infty}.$$

(b) Prove that $\{U_n(x)\}_{k=1}^{\infty}$ is an orthonormal system of $L^2([0, M])$.

(c) Show that the system $\{U_n(x)\}_{k=1}^{\infty}$ is complete in $L^2([0, M])$. Hint: use part (a)

9. (a) Write the statement of the Whittaker-Shannon sampling theorem when $f \in L^2(\mathbb{R})$ and supp $\mathcal{F}f \subset [-\frac{1}{2}, \frac{1}{2}]$.

(b) Let $f \in L^2(\mathbb{R})$ be given by

$$\mathcal{F}f(w) = \begin{cases} 2w+1 & \text{if } -\frac{1}{2} \le x \le 0\\ -2w+1 & \text{if } 0 < x \le \frac{1}{2}\\ 0 & \text{otherwise.} \end{cases}$$

Compute f using \mathcal{F}^{-1} .

(c) Write Whittaker-Shannon sampling theorem for the function f given in (b).

DISCRETE TRANSFORMATIONS AND BASES

10. Let $f = (f(n))_{n=0}^{N-1}$ be a discrete signal of size N.

(a) Give the definition of the discrete Fourier transform (DFT) of f.

(b) Describe the fast Fourier transform (FFT) algorithm to compute DFT.

(c) Let f = (f(0), f(1), f(2), f(3)) = (1, 0, 1, 0) be a discrete signal of size 4. Compute DFT with the definition given in part (a).

(d) For f as in part (c). Compute DFT using the FFT algorithm described in part (b).

11. (a) Describe the discrete cosine-I basis (DC-I) for the space of signals of size N and give the definition of the discrete cosine-I transform (DCT-I).

(b) Compute de DCT-I of the signal f = (f(0), f(1), f(2), f(3)) = (1, 0, 1, 0).

12. Let

$$\begin{split} \mathbf{X} &= \mathbf{MASTERMATHEMATICS} \\ \text{be a text made up with the letters of the alphabet} \\ \boldsymbol{\mathcal{S}} &= \{ \ \mathbf{A} \ , \ \mathbf{E} \ , \ \mathbf{I} \ , \ \mathbf{C} \ , \ \mathbf{H} \ , \ \mathbf{R} \ , \ \mathbf{S} \ , \ \mathbf{T} \} \end{split}$$

(a) Compute $\mathcal{E}(X)$, the entropy of X.

(b) Find a Huffman code for X.

ORTHONORMAL WAVELETS

13. Let $\varphi(x) = \frac{1}{3}\chi_{[0,3)}$ be a function defined on \mathbb{R} .

(a) Show that $\mathcal{F}f(0) = 1$ and $\mathcal{F}\varphi(w) = e^{-3\pi i w} \frac{\sin 3\pi w}{3\pi w}$ if $w \neq 0$.

(b) Define h(w) by the formula $\mathcal{F}\varphi(2w) = h(w)\mathcal{F}\varphi(w)$. Show that $h(w) = \frac{1 + e^{-6\pi i w}}{2}$ and that $|h(w)|^2 + |h(w+1/2)|^2 = 1$ for all $w \in \mathbb{R}$.

(c) Define

$$h[k] = \langle \frac{1}{2}\varphi(\frac{x}{2}), T_{3k}\varphi \rangle = \int_{-\infty}^{\infty} \frac{1}{2}\varphi(\frac{x}{2})\overline{\varphi(x-3k)}dx.$$

Show that $h[0] = \frac{1}{6} = h[1]$, and h[k] = 0 if $k \neq 0, 1$.

14. (a) Give the definition of Multiresolution Analysis (MRA) $(\{V_j\}_{j\in\mathbb{Z}},\varphi)$.

(b) Consider $\varphi_{j,k}(x) = D_{2^j} T_k \varphi(x)$. Find $\mathcal{F}(\varphi_{j,k})(w)$.

(c) Prove that $\{\varphi_{j,k} : k \in \mathbb{Z}\}$ is and orthonormal basis of V_j using that $\{\varphi_{0,k} : k \in \mathbb{Z}\}$ is and orthonormal basis of V_0 .

15. (a) Explain the way S. Mallat produced orthonormal wavelets in $L^2(\mathbb{R})$ starting with a Multiresolution Analysis (MRA) $(\{V_j\}_{j\in\mathbb{Z}}, \varphi)$.

(b) Let $\varphi(x) = \chi_{[2,3]}$ be the scaling function fo an MRA. Find the low-pass filter h(w) associated to φ .

(c) Find the high-pass filter g(w) associated to φ given by $g(w) = e^{-2\pi i w} \overline{h(w + \frac{1}{2})}$.

(d) Find the orthonormal wavelet ψ associated to the scaling function φ and the high-pass filter g(w).