1. Prove that if M is a closed subspace of a Hilbert space $(\mathcal{H},\langle \rangle)$, then $\left(M^{\perp}\right)^{\perp}=M$.
2. Prove that, for an interval $[a, b]$ of length T, the set of functions $\left\{e_{n}: n \in \mathbb{Z}\right\}$ given by

$$
e_{n}(x)=\frac{1}{\sqrt{T}} e^{2 \pi i \frac{n}{T} x}, \quad x \in \mathbb{R}
$$

is an orthornormal system of $L_{p}^{2}([a, b])$ with inner product given by $\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x$.
3. Prove that, for an interval $[a, b]$ of length T, the set of functions $\left\{e_{n}: n \in \mathbb{Z}\right\}$ given by

$$
e_{n}(x)=\frac{1}{\sqrt{T}} e^{2 \pi i \frac{n}{T} x}, \quad x \in \mathbb{R}
$$

is complete in $L_{p}^{2}([a, b])$ with inner product given by $\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x$. (Hint: Prove that the Plancherel identity holds for $f \in L_{p}^{2}([a, b])$ using that it holds for the space $L_{p}^{2}([0,1])$ for an appropriate exponential basis.)
4. (a) For $f=\chi_{[a, b]}$ compute $\mathcal{F} f(w)$ and prove that $\lim _{|w| \rightarrow \infty} \mathcal{F} f(w)=0$.
(b) If $f=\sum_{i=1}^{\infty} \alpha_{i} \chi_{\left[a_{i}, b_{i}\right]}$ is a simple function prove that $\lim _{|w| \rightarrow \infty} \mathcal{F} f(w)=0$.
5. Prove that if $f, g \in L^{2}(\mathbb{R})$, then $f * g \in L^{\infty}(\mathbb{R})$ and $\|f * g\|_{\infty} \leq\|f\|_{2}\|g\|_{2}$. (Hint: Use Cauchy-Schwarz inequality).
6. Prove that if $f \in L^{2}(\mathbb{R} \times \mathbb{R})$ and $\operatorname{supp} \mathcal{F} f \subset\left[-\frac{T_{1}}{2}, \frac{T_{1}}{2}\right] \times\left[-\frac{T_{1}}{2}, \frac{T_{1}}{2}\right], T_{1}, T_{2}>0$, then

$$
f\left(x_{1}, x_{2}\right)=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} f\left(\frac{k_{1}}{T_{1}}, \frac{k_{2}}{T_{2}}\right) \frac{\sin \pi\left(T_{1} x-k_{1}\right)}{\pi\left(T_{1} x-k_{1}\right)} \frac{\sin \pi\left(T_{2} x-k_{2}\right)}{\pi\left(T_{2} x-k_{2}\right)}
$$

with convergence in $L^{2}(\mathbb{R} \times \mathbb{R})$ and uniformly on $\mathbb{R} \times \mathbb{R}$.
7. (a) Build a Huffman code \mathcal{C} for the following text

$$
X=13524135352413513524111
$$

made up with the symbols of $S=\{1,2,3,4,5\}$.
(b) Compute $\mathcal{E}(X)$ and $M_{X}(\mathcal{C})$.
8. Let $\left(\left\{V_{j}:\right\}_{j \in \mathbb{Z}}, \varphi\right)$ be a Multiresolution Analysis. Let W_{0} be the orthogonal complement of V_{0} in V_{1}, that is $V_{0} \oplus W_{0}=V_{1}$.. For $j \in \mathbb{Z}, j \neq 0$, define

$$
W_{j}=\left\{D_{2^{j}} f: f \in W_{0}\right\} .
$$

Show that $V_{j} \oplus W_{j}=V_{j+1}$ for all $j \in \mathbb{Z}$.
9. Let $h(w)$ and $g(w)$ be two functions in $L_{p}^{2}([0,1])$ of the form

$$
h(w)=\sum_{k=-\infty}^{\infty} h[k] e^{-2 \pi i k w}, \quad g(w)=\sum_{k=-\infty}^{\infty} g[k] e^{-2 \pi i k w}
$$

If we have the relation $g(w)=e^{-2 \pi i w} \overline{h\left(w+\frac{1}{2}\right)}$, prove that

$$
g[k]=\overline{h[1-k]}(-1)^{k} .
$$

10. With computations similar to the ones of Proposition 4.5.1, prove that

$$
d_{j-1}=\sqrt{2} \sum_{k=-\infty}^{\infty} \overline{g(x)[k-2 p]} c_{j}[k],
$$

where $\{g[k]\}_{k \in \mathbb{Z}}$ are the coefficients of the high pass filter.

