Universidad Autónoma de Madrid Master in Mathematics and Applications Wavelets and Signal Processing - 2016-17

Homework 5 Due: Friday, June 2, 2017

Frame Theory.

- 1. Let $\{\varphi_k : k = 1, 2, ...\}$ be a Parseval frame in a Hilbert space \mathbb{H} . Show that the following conditions are equivalent:
 - a) $\{\varphi_k : k = 1, 2, ...\}$ is an orthonormal basis of \mathbb{H} .
 - b) $\|\varphi_k\| = 1$ for all k = 1, 2, ...
- **2.** a) Let $\varphi_k = (a_k \cos \theta_k, a_k \sin \theta_k), k = 1, 2, ..., M \ (M \ge 2)$ be vectors in \mathbb{R}^2 written in polar coordinates. Prove that $\Phi = \{\varphi_k : k = 1, 2, ..., M\}$ is a tight frame for \mathbb{R}^2 if and only if

$$\sum_{k=1}^{M} a_k^2 \cos 2\theta_k = 0, \text{ and } \sum_{k=1}^{M} a_k^2 \sin 2\theta_k = 0.$$

(Hint: Write the synthesis operator T in matrix form and use that Φ is a tight frame with constant A if and only if $F = TT^* = AI$, where F is the frame operator.)

- b) Show that if $n \geq 2$ the n^{th} -roots of unity, that is the vertices of and n-sided regular polygon, form a tight frame for \mathbb{R}^2 .
- **3.** Let $\Phi = \{\varphi_k : k = 1, 2, ..., \}$ be a frame in a separable Hilbert space \mathbb{H} , with frame operator F. Since F is a positive, selfadjoint and invertible operator, so is F^{-1} . Its positive square root, denoted by $F^{-1/2}$, is also positive and selfadjoint, and commutes with F. Show that $\Psi = \{\psi_k = F^{-1/2}\varphi_k : k = 1, 2, ..., \}$ is a Parseval frame.
- **4.** a) For $g \in L^2(\mathbb{R})$, let $\mathcal{G}(g) = \{M_m T_k g : m, k \in \mathbb{Z}\}$ be a frame for $L^2(\mathbb{R})$. Prove that the frame operator F of the frame $\mathcal{G}(g)$ as well as its inverse commute with modulations M_n and translations T_l .
- b) Let $\psi \in L^2(\mathbb{R})$. Suppose that $W(\psi) = \{D_{2^j}T_k\psi : j, k \in \mathbb{Z}\}$ is a frame for $L^2(\mathbb{R})$. Show that its frame operator F as well as its inverse commute with dilations $D_{2^l}f(x) = 2^{\ell/2}f(2^\ell x)$, $\ell \in \mathbb{Z}$.
- **5.** Suppose that for $g \in L^2(\mathbb{R})$, the collection $\mathcal{G}(g) = \{M_m T_k g : m, k \in \mathbb{Z}\}$ is a frame for $L^2(\mathbb{R})$ with frame bounds A and B. Show that

$$A \le |\mathcal{Z}g(x,\xi)|^2 \le B$$
, $a.e (x,\xi) \in [0,1)^2$,

where $\mathbb{Z}g$ denotes the Zak transform of g.

(Hint: Start proving $\mathcal{Z}(M_m T_k g)(x, \xi) = e^{2\pi i m x} e^{-2\pi i k \xi} \mathcal{Z}g(x, \xi)$. Then show the equality

$$\sum_{m \in \mathbb{Z}_t} \sum_{k \in \mathbb{Z}_t} |\langle f, M_m T_k g \rangle|^2 = \int_0^1 \int_0^1 |\mathcal{Z}g(x, \xi)|^2 |\mathcal{Z}f(x, \xi)|^2 dx d\xi.$$

Use a measure theoretic argument and the definition of frame to show the result.)