Frame theory.

1. Let $\left\{\varphi_{k}: k=1,2, \ldots\right\}$ be a Parseval frame in a Hilbert space \mathbb{H}. Show that the following conditions are equivalent:
a) $\left\{\varphi_{k}: k=1,2, \ldots\right\}$ is an orthonormal basis of \mathbb{H}.
b) $\left\|\varphi_{k}\right\|=1$ for all $k=1,2, \ldots$.
2. a) Let $\varphi_{k}=\left(a_{k} \cos \theta_{k}, a_{k} \sin \theta_{k}\right), k=1,2, \ldots, M(M \geq 2)$ be vectors in \mathbb{R}^{2} written in polar coordinates. Prove that $\Phi=\left\{\varphi_{k}: k=1,2, \ldots, M\right\}$ is a tight frame for \mathbb{R}^{2} if and only if

$$
\sum_{k=1}^{M} a_{k}^{2} \cos 2 \theta_{k}=0, \quad \text { and } \quad \sum_{k=1}^{M} a_{k}^{2} \sin 2 \theta_{k}=0
$$

(Hint: Write the synthesis operator T in matrix form and use that Φ is a tight frame with constant A if and only if $F=T T^{*}=A I$, where F is the frame operator.)
b) Show that if $n \geq 2$ the $n^{\text {th }}$-roots of unity, that is the vertices of and n-sided regular polygon, form a tight frame for \mathbb{R}^{2}.
3. Let $\Phi=\left\{\varphi_{k}: k=1,2, \ldots,\right\}$ be a frame in a separable Hilbert space \mathbb{H}, with frame operator F. Since F is a positive, selfadjoint and invertible operator, so is F^{-1}. Its positive square root, denoted by $F^{-1 / 2}$, is also positive and selfadjoint, and commutes with F. Show that $\Psi=\left\{\psi_{k}=F^{-1 / 2} \varphi_{k}: k=1,2, \ldots,\right\}$ is a Parseval frame.
4. a) For $g \in L^{2}(\mathbb{R})$, let $\mathcal{G}(g)=\left\{M_{m} T_{k} g: m, k \in \mathbb{Z}\right\}$ be a frame for $L^{2}(\mathbb{R})$. Prove that the frame operator F of the frame $\mathcal{G}(g)$ as well as its inverse commute with modulations M_{n} and translations T_{l}.
b) Let $\psi \in L^{2}(\mathbb{R})$. Suppose that $W(\psi)=\left\{D_{2^{j}} T_{k} \psi: j, k \in \mathbb{Z}\right\}$ is a frame for $L^{2}(\mathbb{R})$. Show that its frame operator F as well as its inverse commute with dilations $D_{2^{l}} f(x)=2^{\ell / 2} f\left(2^{\ell} x\right), \ell \in$ \mathbb{Z}.
5. Suppose that for $g \in L^{2}(\mathbb{R})$, the collection $\mathcal{G}(g)=\left\{M_{m} T_{k} g: m, k \in \mathbb{Z}\right\}$ is a frame for $L^{2}(\mathbb{R})$ with frame bounds A and B. Show that

$$
A \leq|\mathcal{Z} g(x, \xi)|^{2} \leq B, \quad \text { a.e }(x, \xi) \in[0,1)^{2}
$$

where $\mathcal{Z} g$ denotes the Zak transform of g.
(Hint: Start proving $\mathcal{Z}\left(M_{m} T_{k} g\right)(x, \xi)=e^{2 \pi i m x} e^{-2 \pi i k \xi} \mathcal{Z} g(x, \xi)$. Then show the equality

$$
\sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}}\left|\left\langle f, M_{m} T_{k} g\right\rangle\right|^{2}=\int_{0}^{1} \int_{0}^{1}|\mathcal{Z} g(x, \xi)|^{2}|\mathcal{Z} f(x, \xi)|^{2} d x d \xi
$$

Use a measure theoretic argument and the definition of frame to show the result.)

