Explicit constructions of wavelets.

1. A scaling function of the Haar MRA is $\varphi=\chi_{[0,1]}$ and $\mathcal{F} \varphi(\xi)=e^{-\pi i \xi} \frac{\sin (\pi \xi)}{\pi \xi}$. The low pass filter of the Haar MRA is $h(\xi)=e^{-\pi i \xi} \cos (\pi \xi)$. Therefore, the following formula must hold:

$$
\prod_{j=1}^{\infty} e^{-\pi i \xi / 2^{j}} \cos \left(\frac{\pi \xi}{2^{j}}\right)=e^{-\pi i \xi} \frac{\sin (\pi \xi)}{\pi \xi}
$$

Show this formula directly using the trigonometric relation $\sin (2 \alpha)=2(\sin \alpha)(\cos \alpha)$.
2. Let $h(\xi)=e^{-3 \pi i \xi} \cos (3 \pi \xi)$. Clearly, h is a continuous function on \mathbb{R}, it is one periodic, and $h(0)=1$.
a) Show that

$$
|h(\xi)|^{2}+\left.h(\xi+1 / 2)\right|^{2}=1, \quad \text { for all } \xi \in \mathbb{R}
$$

b) Define φ by $\mathcal{F} \varphi(\xi)=\prod_{j=1}^{\infty} h\left(\xi / 2^{j}\right)$. Show that $\varphi=\frac{1}{3} \chi_{[0,3]}$. (Observe that the integer translates of φ do not form an orthogonal system in $L^{2}(\mathbb{R})$.)
3. Let c_{k} be given by

$$
\frac{1}{c_{k}}=\int_{0}^{1 / 2}(\sin 2 \pi x)^{2 k+1} d x>0
$$

and

$$
g_{k}(\xi)=1-c_{k} \int_{0}^{\xi}(\sin 2 \pi x)^{2 k+1} d x
$$

a) Show that

$$
g_{0}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{2}
$$

b) Show that

$$
g_{1}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{4}(2-\cos 2 \pi \xi)
$$

(Hint: Write $\sin ^{2} x=(1+\cos x)(1-\cos x)$ and integrate by parts.)
4. (2 puntos) Find the coefficients of a low pass filter of Daubechies ${ }_{2} \psi$ orthonormal wavelet using the polynomial

$$
g_{1}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{4}(2-\cos 2 \pi \xi),
$$

found in the previous exercise.
5. (2 puntos) Let c_{k} be given by

$$
\frac{1}{c_{k}}=\int_{0}^{1 / 2}(\sin 2 \pi x)^{2 k+1} d x>0
$$

and

$$
g_{k}(\xi)=1-c_{k} \int_{0}^{\xi}(\sin 2 \pi x)^{2 k+1} d x .
$$

Show, integrating by parts, that

$$
g_{k}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{2 k+2} P_{k}(\xi)
$$

where

$$
P_{k}(\xi)=\frac{1}{2^{k}} \sum_{\ell=0}^{k}\binom{2 k+1}{k-\ell}(1+\cos 2 \pi \xi)^{\ell}(1-\cos 2 \pi \xi)^{k-\ell}
$$

is an even trigonometric polynomial with real coefficients.

