UNIVERSIDAD AUTÓNOMA DE MADRID MASTER IN MATHEMATICS AND APPLICATIONS WAVELETS AND SIGNAL PROCESSING - 2020-21

Homework 2-1 Due: Wednesday, March 10, 2021

ORTHONORMAL BASES FOR SIGNAL AND IMAGE PROCESSING.PART I

1. Given $f : [0,1] \longrightarrow \mathbb{R}$ with $f \in L^2([0,1])$, extend f to \mathbb{R} to obtain a function \tilde{f} odd with respect to the origin, even with respect to 1 and -1 and 4-periodic. By writing the Fourier series of \tilde{f} in [-2,2] in terms of sines and cosines show that the cosine coefficients are zero as well as the even sine coefficients. Prove that

$$\{\sqrt{2}\sin(\frac{2k+1}{2}\pi x): k=0,1,2,\dots\}$$

is and orthornormal basis of $L^2([0,1])$. This is called the **sine-IV** basis for $L^2([0,1])$.

2. Show that for a function $f \in L^2(\mathbb{R}) \cap C^2(\mathbb{R})$, the coefficients of f in the block cosine-I basis given by

$$\{\chi_{[n,n+1)}(x) : n \in \mathbb{Z}\} \cup \{\chi_{[n,n+1)}(x)\sqrt{2}\cos\pi k(x-n) : n \in \mathbb{Z}, k = 1, 2, \dots\}$$

decay, for n fixed, at a rate proportional at least to $1/k^2$.

3. Given $\varepsilon > 0$, choose ψ an even, C^{∞} function defined on \mathbb{R} , supported on $[-\varepsilon, \varepsilon]$ such that $\int_{\varepsilon}^{\varepsilon} \psi(x) = \pi/2$. Let $\theta(x) = \int_{-\infty}^{x} \psi(y) dy$. Show that $\theta(x) + \theta(-x) = \pi/2$. Define $s_{\varepsilon}(x) = \sin \theta(x)$. Show that $[s_{\varepsilon}(x)]^2 + [s_{\varepsilon}(-x)]^2 = 1$.

4. With the same notation as in the previous exercise, let $c_{\varepsilon}(x) = \cos(\theta(x))$. Let $I = [\alpha, \beta] \subset \mathbb{R}, \varepsilon, \varepsilon' > 0$, such that $\alpha + \varepsilon < \beta - \varepsilon'$. The function

$$b_I(x) = s_{\varepsilon}(x - \alpha)c_{\varepsilon'}(x - \beta)$$

is called a **bell** function associated with the interval $I = [\alpha, \beta]$.

- a) Sketch the graph of the bell function b_I .
- b) Show that on $[\alpha \varepsilon, \alpha + \varepsilon]$
- i) $b_I(x) = s_{\varepsilon}(x \alpha)$.
- ii) $b_I(2\alpha x) = s_{\varepsilon}(\alpha x) = c_{\varepsilon}(x \alpha).$
- iii) $b_I^2(x) + b_I^2(2\alpha x) = 1.$
- **5.** Show that the collection of N vectors

$$\mu_k \frac{1}{\sqrt{N}} \left(\sin \frac{k\pi}{N} (n + \frac{1}{2}) \right)_{n = -N}^{N-1}, \qquad k = 1, 2, \dots, N,$$

each one of size 2N, where $\mu_k = 1$ if k = 1, 2, ..., N - 1 and $\mu_N = 1/\sqrt{2}$, is an orthonormal system.