Orthonormal bases for signal and image processing.Part I

1. Given $f:[0,1] \longrightarrow \mathbb{R}$ with $f \in L^{2}([0,1])$, extend f to \mathbb{R} to obtain a function \widetilde{f} odd with respect to the origin, even with respect to 1 and -1 and 4 -periodic. By writing the Fourier series of \widetilde{f} in $[-2,2]$ in terms of sines and cosines show that the cosine coefficients are zero as well as the even sine coefficients. Prove that

$$
\left\{\sqrt{2} \sin \left(\frac{2 k+1}{2} \pi x\right): k=0,1,2, \ldots\right\}
$$

is and orthornormal basis of $L^{2}([0,1])$. This is called the sine-IV basis for $L^{2}([0,1])$.
2. Show that for a function $f \in L^{2}(\mathbb{R}) \cap C^{2}(\mathbb{R})$, the coefficients of f in the block cosine-I basis given by

$$
\left\{\chi_{[n, n+1)}(x): n \in \mathbb{Z}\right\} \cup\left\{\chi_{[n, n+1)}(x) \sqrt{2} \cos \pi k(x-n): n \in \mathbb{Z}, k=1,2, \ldots\right\}
$$

decay, for n fixed, at a rate proportional at least to $1 / k^{2}$.
3. Given $\varepsilon>0$, choose ψ an even, C^{∞} function defined on \mathbb{R}, supported on $[-\varepsilon, \varepsilon]$ such that $\int_{\varepsilon}^{\varepsilon} \psi(x)=\pi / 2$. Let $\theta(x)=\int_{-\infty}^{x} \psi(y) d y$. Show that $\theta(x)+\theta(-x)=\pi / 2$. Define $s_{\varepsilon}(x)=\sin \theta(x)$. Show that $\left[s_{\varepsilon}(x)\right]^{2}+\left[s_{\varepsilon}(-x)\right]^{2}=1$.
4. With the same notation as in the previous exercise, let $c_{\varepsilon}(x)=\cos (\theta(x))$. Let $I=[\alpha, \beta] \subset$ $\mathbb{R}, \varepsilon, \varepsilon^{\prime}>0$, such that $\alpha+\varepsilon<\beta-\varepsilon^{\prime}$. The function

$$
b_{I}(x)=s_{\varepsilon}(x-\alpha) c_{\varepsilon^{\prime}}(x-\beta)
$$

is called a bell function associated with the interval $I=[\alpha, \beta]$.
a) Sketch the graph of the bell function b_{I}.
b) Show that on $[\alpha-\varepsilon, \alpha+\varepsilon]$

- i) $b_{I}(x)=s_{\varepsilon}(x-\alpha)$.
- ii) $b_{I}(2 \alpha-x)=s_{\varepsilon}(\alpha-x)=c_{\varepsilon}(x-\alpha)$.
- iii) $b_{I}^{2}(x)+b_{I}^{2}(2 \alpha-x)=1$.

5. Show that the collection of N vectors

$$
\mu_{k} \frac{1}{\sqrt{N}}\left(\sin \frac{k \pi}{N}\left(n+\frac{1}{2}\right)\right)_{n=-N}^{N-1}, \quad k=1,2, \ldots, N
$$

each one of size $2 N$, where $\mu_{k}=1$ if $k=1,2, \ldots, N-1$ and $\mu_{N}=1 / \sqrt{2}$, is an orthonormal system.

