Explicit constructions of wavelets.

1. A scaling function of the Haar MRA is $\varphi=\chi_{[0,1]}$ and $\mathcal{F} \varphi(\xi)=e^{-\pi i \xi} \frac{\sin (\pi \xi)}{\pi \xi}$. The low pass filter of the Haar MRA is $h(\xi)=e^{\pi i \xi} \cos (\pi \xi)$. Therefore, the following formula must hold:

$$
\prod_{j=1}^{\infty} e^{-\pi i \xi / 2^{j}} \cos \left(\frac{\pi \xi}{2^{j}}\right)=e^{-\pi i \xi} \frac{\sin (\pi \xi)}{\pi \xi}
$$

Show this formula directly using the trigonometric relation $\sin (2 \alpha)=2(\sin \alpha)(\cos \alpha)$.
2. Let $h(\xi)=e^{-3 \pi i \xi} \cos (3 \pi \xi)$. Clarly, h is a continuous function on \mathbb{R}, it is one periodic, and $h(0)=1$.
a) Show that

$$
|h(\xi)|^{2}+\left.h(\xi+1 / 2)\right|^{2}=1, \quad \text { for all } \xi \in \mathbb{R}
$$

b) Define φ by $\mathcal{F} \varphi(\xi)=\prod_{j=1}^{\infty} h\left(\xi / 2^{j}\right)$. Show that $\varphi=\frac{1}{3} \chi_{[0,3]}$. (Observe that the integer translates of φ do not form an orthogomal system in $L^{2}(\mathbb{R})$.)
3. Let c_{k} be given by

$$
\frac{1}{c_{k}}=\int_{0}^{1 / 2}(\sin 2 \pi x)^{2 k+1} d x>0
$$

and

$$
g_{k}(\xi)=1-c_{k} \int_{0}^{\xi}(\sin 2 \pi x)^{2 k+1} d x
$$

a) Show that

$$
g_{0}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{2}
$$

b) Show that

$$
g_{1}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{4}(2-\cos 2 \pi \xi)
$$

(Hint: Write $\sin ^{2} x=(1+\cos x)(1-\cos x)$ and integrate by parts.)
4. (2 puntos) Find the low pass filter coefficients of Daubechies ${ }_{2} \psi$ orthonormal wavelet using the polynomial

$$
g_{1}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{4}(2-\cos 2 \pi \xi),
$$

found in the previous exercise.
5. (2 puntos) Let c_{k} be given by

$$
\frac{1}{c_{k}}=\int_{0}^{1 / 2}(\sin 2 \pi x)^{2 k+1} d x>0
$$

and

$$
g_{k}(\xi)=1-c_{k} \int_{0}^{\xi}(\sin 2 \pi x)^{2 k+1} d x .
$$

Show, integrating by parts, that

$$
g_{k}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{2 k+2} P_{k}(\xi),
$$

where

$$
P_{k}(\xi)=\frac{1}{2^{k}} \sum_{\ell=0}^{k}\binom{2 k+1}{k-\ell}(1+\cos 2 \pi \xi)^{\ell}(1-\cos 2 \pi \xi)^{k-\ell}
$$

is and even trigonometric polynomial with real coefficients.

Coding and Entropy.

6. Show that for any source of information X with N symbols

$$
0 \leq \mathcal{E}(X) \leq \log _{2} N
$$

where $\mathcal{E}(X)=\sum_{k=1}^{n} p_{k} \log _{2} \frac{1}{p_{k}}$ is the Shannon entropy of X for the probabilities $p_{k}, k=0,1,2, \ldots, N$. (Hint: Use Lagrange multipliers to show that the maxima of $\mathcal{E}(X)$ in the region $0 \leq p_{k} \leq 1, k=$ $1,2, \ldots, N$, with the restriction $\sum_{k=1}^{N} p_{k}=1$ is attained at $p_{k}=1 / N, k=1,2, \ldots, N$.
7. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}$ be a source of information whose probabilities are

$$
p_{1}=0.49, p_{2}=0.26, p_{3}=0.12, p_{3}=0.04, p_{5}=0.04, p_{6}=0.03, p_{7}=0.02
$$

a) Compute the entropy of X. Build a binary Huffman code \mathcal{C} for these probabilities and compute $\mathcal{A}_{\mathcal{C}}(X)$.
b) Suppose that the symbols of X are codify with a ternary code that takes values 0,1 , and 2. The code can now be represented in a ternary tree. Extend Huffman algorithm to find a ternary tree for X having the prefix condition and compute the average length of its codified words.
8. The quantize coefficients of an 8×8 block of an image are

$$
\left[\begin{array}{cccccccc}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find a binary Huffman code to represent these symbols.

