Frame theory.

1. Show that the vectors

$$
f_{1}=(1,0), \quad f_{2}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad f_{3}=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
$$

form a tight frame in \mathbb{R}^{2} with frame constant $3 / 2$.
2. Let $\left\{\varphi_{k}: k=1,2, \ldots\right\}$ be a Parseval frame in a Hilbert space \mathbb{H}. Show that the following conditions are equivalent:
a) $\left\{\varphi_{k}: k=1,2, \ldots\right\}$ is an orthonormal basis of \mathbb{H}.
b) $\left\|\varphi_{k}\right\|=1$ for all $k=1,2, \ldots$.
3. Let $\left\{\varphi_{k}: k=1,2, \ldots\right\}$ be a frame in a Hilbert space \mathbb{H} with frame bounds A and B. Show that:
a) If for some $k_{0} \in \mathbb{N}$ de equality $\left\|\varphi_{k_{0}}\right\|^{2}=B$ holds, then $\varphi_{k_{0}} \in \overline{\left.\operatorname{span},\left\{\varphi_{k}: k \neq k_{0}\right\}\right)^{\perp}}$.
b) If for some $k_{0} \in \mathbb{N},\left\|\varphi_{k_{0}}\right\|^{2}<A$, then $\varphi_{k_{0}} \in \overline{\operatorname{span},\left\{\varphi_{k}: k \neq k_{0}\right\}}$.
4. Let

$$
\varphi_{k}=\binom{a_{k} \cos \theta_{k}}{a_{k} \sin \theta_{k}}, \quad k=1,2, \ldots, M(M \geq 2)
$$

be vectors in \mathbb{R}^{2} written in polar coordinates. Prove that $\Phi=\left\{\varphi_{k}: k=1,2, \ldots, M\right\}$ is a tight frame for \mathbb{R}^{2} if and only if

$$
\sum_{k=1}^{M} a_{k}^{2} \cos 2 \theta_{k}=0, \quad \text { and } \quad \sum_{k=1}^{M} a_{k}^{2} \sin 2 \theta_{k}=0
$$

(Hint: Use that Φ is a tight frame with constant A if and only if $F=A I$, where F is the frame operator.)
5. Let $\Phi=\left\{\varphi_{k}: k=1,2, \ldots, M\right\}$ be a frame in \mathbb{C}^{d}, and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}>0$ be the eigenvalues of its frame operator F. Prove that

$$
\sum_{k=1}^{d} \lambda_{k}=\sum_{k=1}^{M}\left\|\varphi_{k}\right\|^{2}
$$

6. Let $\Phi=\left\{\varphi_{k}: k=1,2, \ldots,\right\}$ be a frame in a separable Hilbert space \mathbb{H}, with frame operator F. Since F is a positive, selfadjoint and invertible operator, so is F^{-1}. Its positive square root, denoted by $F^{-1 / 2}$, is also positive and selfadjoint, and commutes with F. Show that $\Psi=\left\{\psi_{k}=F^{-1 / 2} \varphi_{k}: k=1,2, \ldots,\right\}$ is a Parseval frame.
7. For a given $g \in L^{2}(\mathbb{R})$, assume that the inequality $\int_{\mathbb{R}}|f(x) g(x)|^{2} d x \leq B\|f\|^{2}$ holds for all $f \in L^{2}(\mathbb{R})$. Show that $|g(x)|^{2} \leq B$ a. e. $x \in \mathbb{R}$.
8. For $g \in L^{2}(\mathbb{R})$, let $\mathcal{G}(g)=\left\{M_{m} T_{k} g: m, k \in \mathbb{Z}\right\}$ be a frame for $L^{2}(\mathbb{R})$. Prove that the frame operator F of the frame $\mathcal{G}(g)$ commutes with modulations M_{n} and translations T_{l}.
9. Let

$$
g(x)= \begin{cases}2 x+1 & -1 / 2 \leq x<0 \\ -2 x+1 & 0 \leq x<1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Show that $G(g)=\left\{M_{m} T_{n} g: m, n \in \mathbb{Z}\right\}$ is not a frame for $L^{2}(\mathbb{R})$.
10. Let $\psi \in L^{2}(\mathbb{R})$. Suppose that $W(\psi)=\left\{D_{2^{j}} T_{k} \psi: j, k \in \mathbb{Z}\right\}$ is a frame for $L^{2}(\mathbb{R})$. Show that its frame operator F commutes with dilations $D_{2^{l}} f(x)=2^{\ell / 2} f\left(2^{\ell} x\right), \ell \in \mathbb{Z}$.
$\left.{ }^{*}\right)$ He sustituido el ejercicio 9 por otro en el que $g \in L^{2}(\mathbb{R})$. Ahora considera la función

$$
g(x)=\chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(x)+\sum_{k \in Z, k \neq 0} \frac{1}{|k|+1} \chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(x-k),
$$

que está en $L^{2}(\mathbb{R})$. Estudia si $\mathcal{G}(g)=\left\{M_{m} T_{k} g: m, k \in \mathbb{Z}\right\}$ es un marco de $L^{2}(\mathbb{R})$.

