Universidad Autónoma de Madrid MASTER IN MATHEMATICS AND APPLICATIONS Wavelets and Signal Processing - 2015-16

Homework 5 Due: Friday, April 29, 2016

Frame theory.

1. Show that the vectors

$$f_1 = (1,0),$$
 $f_2 = (-\frac{1}{2}, \frac{\sqrt{3}}{2}),$ $f_3 = (-\frac{1}{2}, -\frac{\sqrt{3}}{2})$

form a tight frame in \mathbb{R}^2 with frame constant 3/2.

- **2.** Let $\{\varphi_k: k=1,2,\dots\}$ be a Parseval frame in a Hilbert space \mathbb{H} . Show that the following conditions are equivalent:
 - a) $\{\varphi_k : k = 1, 2, ...\}$ is an orthonormal basis of \mathbb{H} .
 - b) $\|\varphi_k\| = 1$ for all k = 1, 2, ...
- **3.** Let $\{\varphi_k : k = 1, 2, \dots\}$ be a frame in a Hilbert space \mathbb{H} with frame bounds A and B.
 - a) If for some $k_0 \in \mathbb{N}$ de equality $\|\varphi_{k_0}\|^2 = B$ holds, then $\varphi_{k_0} \in \overline{\operatorname{span}, \{\varphi_k : k \neq k_0\}})^{\perp}$. b) If for some $k_0 \in \mathbb{N}$, $\|\varphi_{k_0}\|^2 < A$, then $\varphi_{k_0} \in \overline{\operatorname{span}, \{\varphi_k : k \neq k_0\}}$.

 - **4.** Let

$$\varphi_k = \begin{pmatrix} a_k \cos \theta_k \\ a_k \sin \theta_k \end{pmatrix}, \qquad k = 1, 2, \dots, M \ (M \ge 2)$$

be vectors in \mathbb{R}^2 written in polar coordinates. Prove that $\Phi = \{\varphi_k : k = 1, 2, \dots, M\}$ is a tight frame for \mathbb{R}^2 if and only if

$$\sum_{k=1}^{M} a_k^2 \cos 2\theta_k = 0, \text{ and } \sum_{k=1}^{M} a_k^2 \sin 2\theta_k = 0.$$

(Hint: Use that Φ is a tight frame with constant A if and only if F = AI, where F is the frame operator.)

5. Let $\Phi = \{ \varphi_k : k = 1, 2, \dots, M \}$ be a frame in \mathbb{C}^d , and let $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d > 0$ be the eigenvalues of its frame operator F. Prove that

$$\sum_{k=1}^{d} \lambda_k = \sum_{k=1}^{M} \|\varphi_k\|^2.$$

6. Let $\Phi = \{\varphi_k : k = 1, 2, \ldots, \}$ be a frame in a separable Hilbert space \mathbb{H} , with frame operator F. Since F is a positive, selfadjoint and invertible operator, so is F^{-1} . Its positive square root, denoted by $F^{-1/2}$, is also positive and selfadjoint, and commutes with F. Show that $\Psi = \{ \psi_k = F^{-1/2} \varphi_k : k = 1, 2, \dots, \}$ is a Parseval frame.

- 7. For a given $g \in L^2(\mathbb{R})$, assume that the inequality $\int_{\mathbb{R}} |f(x)g(x)|^2 dx \leq B||f||^2$ holds for all $f \in L^2(\mathbb{R})$. Show that $|g(x)|^2 \leq B$ a. e. $x \in \mathbb{R}$.
- **8.** For $g \in L^2(\mathbb{R})$, let $\mathcal{G}(g) = \{M_m T_k g : m, k \in \mathbb{Z}\}$ be a frame for $L^2(\mathbb{R})$. Prove that the frame operator F of the frame $\mathcal{G}(g)$ commutes with modulations M_n and translations T_l .
 - **9.** Let

$$g(x) = \begin{cases} 2x+1 & -1/2 \le x < 0 \\ -2x+1 & 0 \le x < 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Show that $G(g) = \{M_m T_n g : m, n \in \mathbb{Z}\}$ is not a frame for $L^2(\mathbb{R})$.

- **10.** Let $\psi \in L^2(\mathbb{R})$. Suppose that $W(\psi) = \{D_{2^j}T_k\psi : j, k \in \mathbb{Z}\}$ is a frame for $L^2(\mathbb{R})$. Show that its frame operator F commutes with dilations $D_{2^l}f(x) = 2^{\ell/2}f(2^\ell x), \ell \in \mathbb{Z}$.
 - (*) He sustituido el ejercicio 9 por otro en el que $g \in L^2(\mathbb{R})$. Ahora considera la función

$$g(x) = \chi_{[-\frac{1}{2}, \frac{1}{2}]}(x) + \sum_{k \in \mathbb{Z}, k \neq 0} \frac{1}{|k| + 1} \chi_{[-\frac{1}{2}, \frac{1}{2}]}(x - k),$$

que está en $L^2(\mathbb{R})$. Estudia si $\mathcal{G}(g) = \{M_m T_k g : m, k \in \mathbb{Z}\}$ es un marco de $L^2(\mathbb{R})$.