Coding and Entropy. Biorthogonal wavelets.

1. Show that for any source of information X with N symbols

$$
0 \leq \mathcal{E}(X) \leq \log _{2} N
$$

where $\mathcal{E}(X)=\sum_{k=1}^{n} p_{k} \log _{2} \frac{1}{p_{k}}$ is the Shannon entropy of X for the probabilities $p_{k}, k=0,1,2, \ldots, N$. (Hint: Use Lagrange multipliers to show that the maxima of $\mathcal{E}(X)$ in the region $0 \leq p_{k} \leq 1, k=$ $1,2, \ldots, N$, with the restriction $\sum_{k=1}^{N} p_{k}=1$ is attained at $p_{k}=1 / N, k=1,2, \ldots, N$.
2. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}$ be a source of information whose probabilities are

$$
p_{1}=0.49, p_{2}=0.26, p_{3}=0.12, p_{3}=0.04, p_{5}=0.04, p_{6}=0.03, p_{7}=0.02
$$

a) Compute the entropy of X. Build a binary Huffman code \mathcal{C} for these probabilities and compute $\mathcal{A}_{\mathcal{C}}(X)$.
b) Suppose that the symbols of X are codify with a ternary code that takes values 0,1 , and 2. The code can now be represented in a ternary tree. Extend Huffman algorithm to find a ternary tree for X having the prefix condition and compute the average length of its codified words.
3. The quantize coefficients of an 8×8 block of an image are

$$
\left[\begin{array}{cccccccc}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find a binary Huffman code to represent these symbols.
4. For a discrete signal $x=\{x(n): n \in \mathbb{Z}\}$ use the notation $x(\xi)=\sum_{n \in \mathbb{Z}} x(n) e^{-2 \pi i n \xi}$ to denote its Fourier series.
a) Let $\underline{x}=\{x(2 n): n \in \mathbb{Z}\}$ be the down sampling by 2 of the signal $x=\{x(n): n \in \mathbb{Z}\}$. Show that

$$
\underline{x}(2 \xi)=\frac{1}{2}\left[x(\xi)+x\left(\xi+\frac{1}{2}\right)\right] .
$$

b) Let \check{x} be the upsampling by 2 of the signal $x=\{x(n): n \in \mathbb{Z}\}$, that is, $\check{x}(n)=x(p)$ if $n=2 p$ and $\check{x}(n)=x(0)$ if $n=2 p+1$. Show that $\check{x}(\xi)=x(2 \xi)$.
5. Choose real finite filters h and \widetilde{h} such that

$$
\overline{h(\xi)} \widetilde{h}(\xi)+\overline{h(\xi+1 / 2)} \widetilde{h}(\xi+1 / 2), \quad \text { a.e. } \xi \in \mathbb{R} .
$$

Show that if a is a non-zero real number and ℓ is an integer,

$$
g(\xi)=a e^{-2 \pi i(2 \ell+1) \xi} \overline{\widetilde{h}\left(\xi+\frac{1}{2}\right)}, \quad \text { and } \quad \widetilde{g}(\xi)=\frac{1}{a} e^{-2 \pi i(2 \ell+1) \xi} \overline{h\left(\xi+\frac{1}{2}\right)},
$$

then $(h, \widetilde{h}, g, \widetilde{g})$ is a filter bank for perfect reconstruction.
6. a) Let $h(\xi)=\sum_{n \in \mathbb{Z}} h(n) e^{-2 \pi i n \xi}$ and $\tilde{h}(\xi)=\sum_{n \in \mathbb{Z}} \tilde{h}(n) e^{-2 \pi i n \xi}$ be two filters. Show that the following conditions are equivalent:
i) $\tilde{h}(\xi) \overline{h(\xi)}+\tilde{h}\left(\xi+\frac{1}{2}\right) \overline{h\left(\xi+\frac{1}{2}\right)}=1 \quad$ a.e. $\xi \in \mathbb{R}$.
ii) $\sum_{k \in \mathbb{Z}} \tilde{h}(k) \overline{h(k-2 \ell)}=\frac{1}{2} \delta_{0, l}, \quad \ell \in \mathbb{Z}$.
b) Consider $\tilde{h}(\xi)=\frac{1}{4}\left(e^{-2 \pi i \xi}+2+e^{2 \pi i \xi}\right)$ a real, finite, symmetric filter. Find $h(\xi)=$ $\sum_{k=-2}^{k=2} h(k) e^{2 \pi i k \xi}$, real, symmetric filter of length 5 such that $h(1 / 2)=0$ and satisfies i) of part a). (This is the $\operatorname{CDF}(5,3)$ filter.)
7. Let $\varphi, \tilde{\varphi} \in L^{2}(\mathbb{R})$. Prove that the following conditions are equivalent:
i) $\langle\varphi(\cdot-k), \tilde{\varphi}(\cdot-\ell)\rangle=\delta_{k, l} \quad$ for all $k, \ell \in \mathbb{Z}$,
ii) $\sum_{k \in \mathbb{Z}} \mathcal{F}(\varphi)(\xi+k) \overline{\mathcal{F}(\tilde{\varphi})(\xi+k)}=1, \quad$ a.e. $\xi \in \mathbb{R}$.
8. Show that the low pass filter associated to the spline $\tilde{\varphi}^{(n)}=\Delta^{n}\left(x+N_{n}\right)$ is given by

$$
\tilde{h}^{(n)}(\xi)=e^{-i \epsilon_{n} \pi \xi}(\cos \pi \xi)^{n+1}
$$

9. Take $n=2 \tilde{\ell}$ even natural number and consider the low pass filter

$$
\tilde{h}^{(\tilde{\ell})}(\xi)=e^{-i \pi \xi}(\cos \pi \xi)^{2 \tilde{\ell}+1} .
$$

Show that for any $\ell=1,2,3, \ldots$, a solution of the equation

$$
\text { i) } h(\xi) \overline{\tilde{h}^{(\tilde{\ell})}(\xi)}+h\left(\xi+\frac{1}{2}\right) \overline{\tilde{h}^{(\tilde{\varphi})}\left(\xi+\frac{1}{2}\right)}=1 \quad \xi \in \mathbb{R}
$$

is

$$
h(\xi):=h^{(\ell)}(\xi)=e^{-i \pi \xi}(\cos \pi \xi)^{2 \ell+1} \sum_{n=0}^{\ell+\tilde{\ell}}\binom{\ell+\tilde{\ell}+n}{n}(\sin \pi \xi)^{2 n} .
$$

(Hint: Follow the steps that lead to the solution of equation i) in the case n odd.)
10. Find the coefficients of the filter $\operatorname{CDF}(9,7)$ used by JPEG2000. (Take $\tilde{\ell}=3$ and $\ell=1$.) Use symbolic computation to do the calculations. Draw the graphs of $h(\xi)$ and $\tilde{h}(\xi)$ in $[-1,1]$.

