Explicit constructions of wavelets.

1. Show that

$$
\sum_{k \in \mathbb{Z}} \frac{1}{(\xi+k)^{2}}=\frac{\pi^{2}}{(\sin \pi \xi)^{2}}
$$

using that $\left\{\chi_{[0,1]}(\cdot-k): k \in \mathbb{Z}\right\}$ is an orthonormal system in $L^{2}(\mathbb{R})$.
2. It has been proved in class that

$$
\sum_{k \in \mathbb{Z}} \frac{1}{(\xi+k)^{(N+1)}}=\left(\frac{\pi}{\sin \pi \xi}\right)^{(N+1)} P_{N}(\pi \xi)
$$

Show that

$$
\begin{gathered}
P_{2}(\xi)=\cos \xi \\
P_{3}(\xi)=\frac{2}{3}+\frac{1}{3} \cos (2 \xi) \\
P_{4}(\xi)=\frac{1}{3} \cos ^{2} \xi+\frac{2}{3} \cos ^{3} \xi \\
P_{5}(\xi)=\frac{1}{30} \cos ^{2}(2 \xi)+\frac{13}{30} \cos (2 \xi)+\frac{8}{15} .
\end{gathered}
$$

3. Show the following relation for the basic splines:

$$
\Delta^{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n+1}\binom{n+1}{k} \Delta^{n}(2 x-k)
$$

(Hint: Compute $\frac{\mathcal{F}\left(\Delta^{n}\right)(\xi)}{\mathcal{F}\left(\Delta^{n}\right)(\xi / 2)}$.)
4. a) Show that if n is odd, the spline scaling function φ^{n} is even.
b) Show that if n is even, the spline scaling function φ^{n} is even with respect to $x=1 / 2$.
5. A scaling function of the Haar MRA is $\varphi=\chi_{[0,1]}$ and $\mathcal{F} \varphi(\xi)=e^{-\pi i \xi} \frac{\sin (\pi \xi)}{\pi \xi}$. The low pass filter of the Haar MRA is $h(\xi)=e^{\pi i \xi} \cos (\pi \xi)$. Therefore, the following formula must hold:

$$
\prod_{j=1}^{\infty} e^{-\pi i \xi / 2^{j}} \cos \left(\frac{\pi \xi}{2^{j}}\right)=e^{-\pi i \xi} \frac{\sin (\pi \xi)}{\pi \xi}
$$

Show this formula directly using the trigonometric relation $\sin (2 \alpha)=2(\sin \alpha)(\cos \alpha)$.
6. Let $h(\xi)=e^{-3 \pi i \xi} \cos (3 \pi \xi)$. Clarly, h is a continuous function on \mathbb{R}, it is one periodic, and $h(0)=1$.
a) Show that

$$
|h(\xi)|^{2}+\left.h(\xi+1 / 2)\right|^{2}=1, \quad \text { for all } \xi \in \mathbb{R}
$$

b) Define φ by $\mathcal{F} \varphi(\xi)=\prod_{j=1}^{\infty} h\left(\xi / 2^{j}\right)$. Show that $\varphi=\frac{1}{3} \chi_{[0,3]}$. (Observe that the integer translates of φ do not form an orthogomal system in $L^{2}(\mathbb{R})$.)
7. Let c_{k} be given by

$$
\frac{1}{c_{k}}=\int_{0}^{1 / 2}(\sin 2 \pi x)^{2 k+1} d x>0
$$

and

$$
g_{k}(\xi)=1-c_{k} \int_{0}^{\xi}(\sin 2 \pi x)^{2 k+1} d x
$$

a) Show that

$$
g_{0}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{2} .
$$

b) Show that

$$
g_{1}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{4}(2-\cos 2 \pi \xi) .
$$

(Hint: Write $\sin ^{2} x=(1+\cos x)(1-\cos x)$ and integrate by parts.)
8. Find the low pass filter coefficients of Daubechies ${ }_{2} \psi$ orthonormal wavelet using the polynomial

$$
g_{1}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{4}(2-\cos 2 \pi \xi),
$$

found in the previous exercise.
9. (2 puntos) Let c_{k} be given by

$$
\frac{1}{c_{k}}=\int_{0}^{1 / 2}(\sin 2 \pi x)^{2 k+1} d x>0
$$

and

$$
g_{k}(\xi)=1-c_{k} \int_{0}^{\xi}(\sin 2 \pi x)^{2 k+1} d x
$$

Show, integrating by parts, that

$$
g_{k}(\xi)=\left|\frac{1+e^{-2 \pi i \xi}}{2}\right|^{2 k+2} P_{k}(\xi)
$$

where

$$
P_{k}(\xi)=\frac{1}{2^{k}} \sum_{\ell=0}^{k}\binom{2 k+1}{k-\ell}(1+\cos 2 \pi \xi)^{\ell}(1-\cos 2 \pi \xi)^{k-\ell}
$$

is and even trigonometric polynomial with real coefficients.

