Wavelets and Multiresolution Analysis.

1. Let $\psi \in L^{2}(\mathbb{R})$ be defined by $\mathcal{F}(\psi)=\chi_{I}$, where $I=\left[-1,-\frac{1}{2}\right) \cup\left[\frac{1}{2}, 1\right]$. Prove that the collection $\left\{\psi_{j, k}(x)=2^{j / 2} \psi\left(2^{j} x-k\right): j, k \in \mathbb{Z}\right\}$ is and orthogonal system in $L^{2}(\mathbb{R})$ by showing:
a) If $j_{1} \neq j_{2}, j_{1}, j_{2} \in \mathbb{Z}$ and $k_{1}, k_{2} \in \mathbb{Z},<\psi_{j_{1}, k_{1}}, \psi_{j_{2}, k_{2}}>=0$.
b) If $j \in \mathbb{Z}$ and $k_{1}, k_{2} \in \mathbb{Z},\left\langle\psi_{j, k_{1}}, \psi_{j, k_{2}}\right\rangle=\delta_{k_{1}, k_{2}}$.
2. Let $E \subset \mathbb{R}$ be a measurable set such that
a) $\{E+k: k \in \mathbb{Z}\}$ is a partition of \mathbb{R},
b) $\left\{2^{j} E: j \in \mathbb{Z}\right\}$ is a partition of $\mathbb{R} \backslash\{0\}$.
i) Prove that $\left\{e^{2 \pi i k \xi}: k \in \mathbb{Z}\right\}$ is an orthonormal basis for $L^{2}(E)$. (Hint: Since $\{E+k: k \in \mathbb{Z}\}$ is a partition of \mathbb{R}, there exist $k_{l} \in \mathbb{Z}, l \in Z$, and a partition $\left\{E_{\ell}: \ell \in \mathbb{Z}\right\}$ of E such that $\left\{E_{\ell}+k_{\ell}: \ell \in \mathbb{Z}\right\}$ is a partition of $[0,1)$.)
ii) Let $\psi \in L^{2}(\mathbb{R})$ be defined by $\mathcal{F} \psi=\chi_{E}$. Show that ψ is an orthonormal wavelet for $L^{2}(\mathbb{R})$. (Hint: to prove completeness imitate the proof of the completeness of the Shannon wavelet.)
3. i) (Journé) Let

$$
E_{J}=\left[-\frac{16}{7},-2\right) \cup\left[-\frac{1}{2},-\frac{2}{7}\right) \cup\left[\frac{2}{7}, \frac{1}{2}\right) \cup\left[2, \frac{16}{7}\right)
$$

Show that ψ_{J} given by $\mathcal{F} \psi_{J}=\chi_{E_{J}}$ is an orthonormal wavelet for $L^{2}(\mathbb{R})$. (Hint: Use the previous exercise.)
ii) (Lemarié) Let

$$
E_{L}=\left[-\frac{4}{7},-\frac{2}{7}\right) \cup\left[\frac{2}{7}, \frac{3}{7}\right) \cup\left[\frac{12}{7}, \frac{16}{7}\right)
$$

Show that ψ_{L} given by $\mathcal{F} \psi_{J}=\chi_{E_{L}}$ is an orthonormal wavelet for $L^{2}(\mathbb{R})$. (Hint: Use the previous exercise.)
4. Show that for the Haar-MRA with scaling function $\varphi=\chi_{[0,1)}$, its low pass filter coefficients are given by $h(0)=h(1)=1 / 2$ and $h(k)=0$ if $k \neq 0,1$, and the low pas filter is $h(\xi)=$ $e^{-\pi i \xi} \cos (\pi \xi)$.
5. Show that for the Shannon-MRA with scaling function φ given by $\varphi(x)=\frac{\sin (\pi x)}{\pi x}, x \neq 0$ and $\varphi(0)=1$ (recall that $\left.\mathcal{F} \varphi=\chi_{[-1 / 2,1 / 2)}\right)$ the associate discrete filter is

$$
h(k)= \begin{cases}0 & \text { if } k=2 \ell, \ell \neq 0 \\ 1 / 2 & \text { if } k=0 \\ \frac{(-1)^{\ell}}{\pi(2 \ell+1)} & \text { if } k=2 \ell+1\end{cases}
$$

Show that the low pass filter of this MRA is

$$
h(\xi)=\sum_{k=-\infty}^{\infty} \chi_{\left[-\frac{1}{4}, \frac{1}{4}\right)}(\xi+k) .
$$

6. Let $h(\xi)$ and $g(\xi)$ be two 1-periodic functions in $L^{2}([0,1))$ satisfying $g(\xi)=e^{-2 \pi i \xi} \overline{h\left(\xi+\frac{1}{2}\right)}$. If $h(\xi)=\sum_{k=-\infty}^{\infty} h(k) e^{-2 \pi i k \xi}$ and $g(\xi)=\sum_{k=-\infty}^{\infty} g(k) e^{-2 \pi i k \xi}$, show that

$$
g(k)=\overline{h(1-k)}(-1)^{1-k}, \quad k \in \mathbb{Z} .
$$

7. a) Consider the Haar-MRA with scaling function $\varphi=\chi_{[0,1)}$. Show that an orthonormal wavelet associated to this MRA is given by $\psi(x)=\chi_{\left[0, \frac{1}{2}\right.}-\chi_{\left[\frac{1}{2}, 1\right)}$.
b) For the Shannon MRA with scaling function $\mathcal{F} \varphi=\chi_{\left[-\frac{1}{2}, \frac{1}{2}\right)}$, show that one of this associated orthonormal wavelets is given by

$$
\mathcal{F} \psi(\xi)=e^{-\pi i \xi} \chi_{\left[-1,-\frac{1}{2}\right) \cup\left[\frac{1}{2}, 1\right)} .
$$

8. a) For a positive integer $p, p>1$, write the definition of $\operatorname{MRA}(p)$, that is a Multiresolution Analysis with dilation factor p.
b) Show that for an $\operatorname{MRA}(p)$, there exists a 1-periodic function $h(\xi)$ belonging to $L^{2}([0,1))$ such that

$$
\mathcal{F} \varphi(\xi)=h\left(\frac{\xi}{p}\right) \mathcal{F}\left(\frac{\xi}{p}\right)
$$

where φ is the scaling function of the $\operatorname{MRA}(p)$. The function h is called the low pass filter of the $\operatorname{MRA}(p)$.
9. For and $\operatorname{MRA}(p), p>1$, show that

$$
\sum_{s=0}^{p-1}\left|h\left(\xi+\frac{s}{p}\right)\right|^{2}=1 \quad \text { a.e } \xi \in \mathbb{R}
$$

where h is the low pass filter of the $\operatorname{MRA}(p)$ whose existence is proved in part b$)$ of the previous exercise.
10. Show that the detail coefficients $d_{j-1}(p)$ are computed with the formula

$$
d_{j-1}(p)=\sqrt{2} \sum_{k \in \mathbb{Z}} \overline{g(k-2 p)} c_{j}(k),
$$

where $\left\{c_{j}(k): k \in \mathbb{Z}\right\}$ are the coefficients of f at level j and $\{g(k): k \in \mathbb{Z}\}$ are the high pass filter coefficients.

