HOJA 3 DE PROBLEMAS

- 1. Sea $c_0(\mathbb{N})$ el espacio de sucesiones $a = \{a_n\}_{n=1}^{\infty}$ tal que $\lim_{n\to\infty} |a_n| = 0$. Demostrar que si $0 se cumple que <math>\ell^p(\mathbb{N})$ es un subespacio denso de $c_0(\mathbb{N})$, dotado éste con la norma $\|\cdot\|_{\infty}$.
- 2. Supongamos que $a = \{a_n\}_{n=1}^{\infty}$ es una sucesión de números reales positivos con la propiedad de que

$$\sup\{\sum_{n=1}^{\infty} a_n b_n : ||b||_2 = 1\} = S < \infty$$

Demostrar que $a \in \ell^2$ y $||a||_2 = S$.

- 3. Sea $h = \chi_{(0,1)}$
 - a) Calcular y dibujar h * h.
 - b) Calcular y dibujar (con ordenador si te hace falta) h * h * h.
- 4. (Forma general de la desigualdad de Young) Sean $1 \le p, q, r \le \infty$ tal que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$. Demostrar que si $f \in L^p$ y $g \in L^q$ se cumple que $f * g \in L^r$ y

$$||f * g||_r \le ||f||_p ||g||_q$$
.

(Indicacion: observar que $(\frac{1}{p}-\frac{1}{r})+(\frac{1}{q}-\frac{1}{r})+\frac{1}{r}=1$ y usar la desigualdad de Hölder para probar que

$$|f * g(x)| \le ||f||_{p^{r}}^{\frac{r-p}{r}} ||g||_{q^{r}}^{\frac{r-q}{r}} \left(\int |f(y)|^{p} |g(x-y)|^{q} dy \right)^{1/r};$$

después usar el teorema de Fubini para acotar $||f * g||_r$.)

- 5. Sea $C_0(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : f \text{ continua y } \lim_{|x| \to \infty} |f(x)| = 0 \}.$
 - a) Demostrar que $C_c(\mathbb{R})$ es denso en $C_0(\mathbb{R})$ con la topología de $\| \|_{\infty}$.
 - b) Demostrar que $C_c^{\infty}(\mathbb{R})$ es denso en $C_0(\mathbb{R})$ con la topología de $\| \|_{\infty}$. (Indicación: usar el apartado (a) y el teorema de regularización de funciones mediantes convoluciones)
- 6. Sean A y B dos espacios vectoriales normados y $T:A\to B$ un operador lineal. Demostrar que las siguientes afirmaciones son equivalentes:
 - a) Tes Lipschitz, es decir, existe $C<\infty$ tal que $\|Tx-Ty\|_B\leq C\|x-y\|_A$ para todo $x,y\in A$.
 - b) T es continuo para todo $x \in A$.
 - c) T es continuo en $x = 0 \in A$.
 - d) T es acotado, es decir, existe $C < \infty$ tal que $||Tx||_B \le C||x||_A$ para todo $x \in A$.
- 7. Sea $T: L^1(X,\mu) \to L^1(X,\mu)$ un operador lineal y acotado. Demostrar que existe $C < \infty$ tal que para toda $f \in L^1(X,\mu)$ se tiene

$$\mu(\lbrace x \in X : |Tf(x)| > \lambda \rbrace) \le \frac{C}{\lambda} ||f||_1.$$

8. A partir del teorema de **Hardy-Littlewood** y usando la desigualdad de Jensen probar que si $p \in [1, \infty)$ existe $C < \infty$ tal que para toda $f \in L^p(\mathbb{R})$ y para todo $\lambda > 0$ se cumple que

$$|\{x \in \mathbb{R} : Mf(x) > \lambda\}| \le \frac{C}{\lambda^p} \int_{\mathbb{R}} |f(y)|^p dy,$$

donde M es la función maximal de Hardy-Littlewood.

- 9. Describir la función maximal de Hardy-Littlewood Mf para $f(x) = \chi_{(-1,1)}(x)$. Usar este resultado para probar que el operador maximal de Hardy-Littlewood M no está acotado de $L^1(\mathbb{R})$ en $L^1(\mathbb{R})$.
- 10. Sea (X, \mathcal{M}, μ) un espacio de medida y $f: X \to \mathbb{C}$ medible. Se llama **función de distribución** de f a la función $\sigma_f: (0, \infty) \to [0, \infty)$ definida por

$$\sigma_f(\lambda) = \mu(\{x \in X : |f(x)| > \lambda\}).$$

- a) Demostrar que $||f||_{L^1(X,\mu)} = ||\sigma_f||_{L^1(0,\infty)}$.
- b) Describir y dibujar la función de distribución de la función $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f = 5\chi_{(-3,-2)} + 2\chi_{(0,2)} - 3\chi_{(4,7)}$$

11. Sean $p \neq q$ exponentes conjugados con $1 \leq p < \infty$. Si $f \in L^p(X, \mu)$, demostrar que

$$||f||_p = \sup\left\{ \left| \int_X f \, \bar{g} \, d\mu \right| : ||g||_q = 1 \right\}$$

(Indicación: para demostrar \geq usar la desigualdad de Hölder; para probar \leq tomar $g_0(x) = |f(x)|^{p-2}f(x)/||f||_p^{p-1}$ cuando sea posible y $g_0(x) = 0$ si f(x) = 0.)

12. (**Desigualdad integral de Minkowski**) Sean (X, μ) e (Y, ν) dos espacios de medida y $f: X \times Y \to \mathbb{C}$ una función medible. Si $1 \leq p \leq \infty$, $f(\cdot, y) \in L^p(X, \mu)$ c.t. $y \in Y$ y la función $y \to ||f(\cdot, y)||_p$ pertenece a $L^1(Y, \nu)$, demostrar que se cumple:

$$\left\| \int_{Y} f(\cdot, y) \, d\nu(y) \right\|_{L^{p}(X, \mu)} \le \int_{Y} \| f(\cdot, y) \|_{L^{p}(X, \mu)} \, d\nu(y) \, .$$

(NOTA: esta desigualdad se puede leer de la siguiente manera: la norma de una integral es menor o igual que la integral de las normas)

(Indicación: usar el ejercicio anterior y la desigualdad de Hölder)

13. Sea $K:(0,\infty)\times(0,\infty)\to\mathbb{C}$ medible tal que $K(\lambda x,\lambda y)=\frac{1}{\lambda}K(x,y)$ para todo $\lambda>0$ y $\int_0^\infty |K(x,1)|\,x^{-1/p}\,dx=C<\infty$ para algún $p\in[1,\infty]$. Sea q el exponente conjugado de p. Para $f\in L^p$ y $g\in L^q$ definir

$$Tf(y) = \int_0^\infty K(x,y) f(x) dx$$
 y $Sg(x) = \int_0^\infty K(x,y) g(y) dy$.

- a) Demostrar que T es un operador acotado de $L^p(0,\infty)$ en $L^p(0,\infty)$.
- b) Demostrar que S es un operador acotado de $L^q(0,\infty)$ en $L^q(0,\infty)$.

(Indicación: para el apartado (a) hacer el cambio de variable z = x/y y después utilizar la desigualdad integral de Minkowski. Hace algo similar para el apartado (b).

14. (Desigualdad de Hilbert) Demostrar que el operador

$$Tf(y) = \int_0^\infty \frac{f(x)}{x+y} \, dx$$

es acotado de $L^p(0,\infty)$ en $L^p(0,\infty)$ para todo $p\in(1,\infty)$. (Indicación: usar el ejercicio anterior)