ON THE TORSION OF RATIONAL ELLIPTIC CURVES OVER SEXTIC FIELDS

HARRIS B. DANIELS AND ENRIQUE GONZÁLEZ-JIMÉNEZ

Abstract

Given an elliptic curve E / \mathbb{Q} with torsion subgroup $G=E(\mathbb{Q})_{\text {tors }}$ we study what groups (up to isomorphism) can occur as the torsion subgroup of E base-extended to K, a degree 6 extension of \mathbb{Q}. We also determine which groups $H=E(K)_{\text {tors }}$ can occur infinitely often and which ones occur for only finitely many curves. This article is a first step towards a complete classification of torsion growth of over sextic fields.

1. Introduction

A fundamental theorem in the field of arithmetic geometry states that given a number field K and an elliptic curve E defined over K, the set of K-rationals points on E, denoted $E(K)$, can be given the structure of a finitely generated abelian group. Further, it is well-known that the torsion subgroup of this group $E(K)_{\text {tors }}$ is isomorphic to $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m n \mathbb{Z}$ for some positive integers m and n. For the sake of brevity we will write $\mathbb{Z} / n \mathbb{Z}=(n)$ and $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m n \mathbb{Z}=(m, m n)$ and call $(m, m n)$ the torsion structure of E over K. By abuse of notation, we write $E(K)_{\text {tors }}=(m, m n)$.

Question 1. Given a positive integer d what groups (up to isomorphism) arise as the torsion subgroup of an elliptic curve defined over a number field of degree d over \mathbb{Q} ?

Beginning with Mazur's classification of torsion structures over \mathbb{Q} in [32], mathematicians have spent considerable time and effort answering different facets of this question. Mazur's result asserts that the possible torsion structures over \mathbb{Q} belong to the set:

$$
\Phi(1)=\{(n): n=1, \ldots, 10,12\} \cup\{(2,2 m): m=1, \ldots, 4\}
$$

Over quadratic fields, the classification of torsion structures was completely settled in a series of papers by Kamienny [23] and Kenku and Momose [28]. Currently there is no complete classification for the case over cubic extension in the literature, but there are many significant results towards such a classification. In order to describe what is known we define the following notation:

- Let $\Phi(d)$ be the set of groups up to isomorphism that occur as the torsion structure of an elliptic curve defined over a number field of degree d.
- Let $\Phi^{\infty}(d) \subseteq \Phi(d)$ be the set of groups that arise for infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves defined over number fields of degree d,
For degree $d=1,2$, each group in $\Phi(d)$ occur for infinitely many elliptic curves and so $\Phi^{\infty}(d)=\Phi(d)$. While determining the set $\Phi(d)$ is still open for $d \geq 3$, the uniform boundedness of torsion on elliptic curves, proved by Merel [33] states that for any d, there exists a bound $B(d)$ depending only on d such that $|G| \leq B(d)$ for all $G \in \Phi(d)$. Thus, the set $\Phi(d)$ is finite for any d. While $\Phi(d)$ is not completely known, $\Phi^{\infty}(d)$ is known for $d=3,4$ thanks to the work of Jeon et al. [21, 22] and $d=5,6$ by Derickx and Sutherland [9]. In this article we are interested in the sextic case:

$$
\begin{aligned}
\Phi^{\infty}(6)= & \{(n) \mid n=1, \ldots, 22,24,26,27,28,30\} \cup\{(2,2 m) \mid m=1, \ldots, 10\} \\
& \cup\{(3,3 m) \mid m=1, \ldots, 4\} \cup\{(4,4),(4,8),(6,6)\} .
\end{aligned}
$$

Unlike in the cases when $d=1$ or 2 when $d=3,5$, or 6 we know that $\Phi^{\infty}(d) \subsetneq \Phi(d)$, although it is not known if $\Phi(4)$ and $\Phi^{\infty}(4)$ coincide. To illustrate this in 35 Najman showed that the elliptic curve defined over \mathbb{Q} with Cremona label 162 b 1 has a point of order 21 defined over the field $\mathbb{Q}\left(\zeta_{9}\right)^{+}=\mathbb{Q}\left(\zeta_{9}+\zeta_{9}^{-1}\right)$ where ζ_{9} is a primitive 9 -th root of unity and therefore $(21) \in \Phi(3)$, but $(21) \notin \Phi^{\infty}(3)$. For degrees $d=5,6$, van Hoeij [19]

[^0]gives examples of elliptic curve defined over number field of degree d (not coming from elliptic curves over \mathbb{Q}) with torsion structure not beloging to $\Phi^{\infty}(d)$. With this in mind we give the following definition:

- Let $J(d) \subseteq \overline{\mathbb{Q}}$ be the finite set defined by the following property: $j \in J(d)$ if and only if there exists a number field K of degree d, and an elliptic curve E / K with $j(E)=j$, such that $E(K)_{\text {tors }}$ is isomorphic to a group in $\Phi(d)$ that is not in $\Phi^{\infty}(d)$. We denote by $J_{\mathbb{Q}}(d) \subseteq \mathbb{Q}$ the subset of $J(d)$ where we restrict to the case of elliptic curves E defined over \mathbb{Q}.
Since $\Phi(d)=\Phi^{\infty}(d)$ when $d=1$ or 2 we have that $J(1)=J(2)=\emptyset$ and Najman's examples shows that $-140625 / 8 \in J_{\mathbb{Q}}(3)$.

The question at the center of this paper is how torsion subgroups of elliptic curves can grow when they are considered over larger fields of definition. In particular, we will be interested in how the torsion subgroup of E / \mathbb{Q} can change when we consider the curve E as being defined over a sextic extension of \mathbb{Q}. The techniques in the paper are closely related to those found in [13] and following that paper we give the following definitions.

- Let $\Phi_{\mathbb{Q}}(d)$ be the subset of $\Phi(d)$ such that $H \in \Phi_{\mathbb{Q}}(d)$ if there is an elliptic curve E / \mathbb{Q} and a number field K of degree d such that $E(K)_{\text {tors }}=H$. Similarly, the set $\Phi_{\mathbb{Q}}^{\infty}(d) \subseteq \Phi^{\infty}(d)$.
- Let $\Phi_{\mathbb{Q}}^{\star}(d)$ be the intersection of the sets $\Phi_{\mathbb{Q}}(d)$ and $\Phi^{\infty}(d)$.
- Fixed $G \in \Phi(1)$, let $\Phi_{\mathbb{Q}}(d, G)$ be the subset of $\Phi_{\mathbb{Q}}(d)$ such that E runs through all elliptic curves over \mathbb{Q} such that $E(\mathbb{Q})_{\text {tors }}=G$. Also, let $\Phi_{\mathbb{Q}}^{\star}(d, G)=\Phi_{\mathbb{Q}}(d, G) \cap \Phi^{\infty}(d)$.
- Let $R_{\mathbb{Q}}(d)$ be the set of all primes p such that there exists a number field K of degree d and an elliptic curve E / \mathbb{Q} such that E has a point of order p defined over K.
For $d=2,3, \Phi_{\mathbb{Q}}(d)$ have been completely described by Najman [35]:

$$
\begin{aligned}
& \Phi_{\mathbb{Q}}(2)=\{(n) \mid n=1, \ldots, 10,12,15,16\} \cup\{(2,2 m) \mid m=1, \ldots, 6\} \cup\{(3,3),(3,6),(4,4)\}, \text { and } \\
& \Phi_{\mathbb{Q}}(3)=\{(n) \mid n=1, \ldots, 10,12,13,14,18,21\} \cup\{(2,2 m) \mid m=1,2,3,4,7\} .
\end{aligned}
$$

The set $\Phi_{\mathbb{Q}}(4)$ in [4, 14], $\Phi_{\mathbb{Q}}(5)$ in [11], $\Phi_{\mathbb{Q}}(7)$ in [14], and moreover in [14] it has been ${ }^{[1}$ established $\Phi_{\mathbb{Q}}(d)=\Phi(1)$ for any positive integer d whose prime divisors are greater than 7 .

For any $G \in \Phi(1)$ the set $\Phi_{\mathbb{Q}}(d, G)$ has been determined for $d=2$ in [17], for $d=3$ in [16], for $d=4$ in [13], for $d=5$ in [11, for $d=7$ in [14] and for any d whose prime divisors are greater than 7 in [14].

It has been determined in [14] all the possible degrees of $[\mathbb{Q}(P): \mathbb{Q}]$, where P is a point of prime order p for a set of density $\frac{1535}{1536}$ of all primes and in particular for all $p<3167$. In particular, this allows to determine $R_{\mathbb{Q}}(d)$ for all $d \leq 3342296$. Relevant to this article, is the case of sextic fields:

$$
R_{\mathbb{Q}}(6)=\{2,3,5,7,13\} .
$$

Finally, notice that the obtaining of the set $\Phi_{\mathbb{Q}}^{\star}(4)$ has been a main tool to the determination of the whole classification of $\Phi_{\mathbb{Q}}(4)$. For the case of quartic fields, there are only 5 transitive groups of S_{4}. The classification of $\Phi_{\mathbb{Q}}(4)$ was made separately in Galois and non Galois quartics. Meanwhile for S_{6} there are 14 transitive groups. Then a first attempt to obtain $\Phi_{\mathbb{Q}}(6)$ is to obtain $\Phi_{\mathbb{Q}}^{\star}(6)$. Similar to what is done in [13] and later in [14].

Lastly we point out here that for the time being, it is not known $\Phi^{\infty}(d)$ for $d>6$. Therefore it is not possible to compute $\Phi_{\mathbb{Q}}^{\star}(d)$ for $d>6$.

Our first main result determines $\Phi_{\mathbb{Q}}^{\star}(6)$ and $\Phi_{\mathbb{Q}}^{\infty}(6)$:
Theorem 2. The set $\Phi_{\mathbb{Q}}^{\star}(6)$ is given by

$$
\begin{aligned}
\Phi_{\mathbb{Q}}^{\star}(6)= & \{(n) \mid n=1, \ldots, 21, n \neq 11,17,19,20\} \cup\{(30)\} \\
& \cup\{(2,2 n) \mid n=1, \ldots, 7,9\} \cup\{(3,3 n) \mid n=1, \ldots, 4\} \cup\{(4,4),(6,6)\},
\end{aligned}
$$

and $\Phi_{\mathbb{Q}}^{\infty}(6)=\Phi_{\mathbb{Q}}^{\star}(6) \backslash\{(15),(21),(30)\}$. In particular, if E / \mathbb{Q} is an elliptic curve with $j(E) \notin J_{\mathbb{Q}}(6)$, then $E(K)_{\text {tors }} \in \Phi_{\mathbb{Q}}^{\star}(6)$, for any number field K / \mathbb{Q} of degree 6 . Moreover, if E / \mathbb{Q} is an elliptic curve with $E(K)_{\text {tors }}=$ H over some sextic field K, then
(i) $H=(21): j(E) \in\left\{3^{3} \cdot 5^{3} / 2,-3^{2} \cdot 5^{3} \cdot 101^{3} / 2^{21},-3^{3} \cdot 5^{3} \cdot 382^{3} / 2^{7},-3^{2} \cdot 5^{6} / 2^{3}\right\}$.

[^1](ii) $H=(15)$: then E has Cremona label $50 a 3$ 50a4 50b1. 50b2 $450 b 4$. $450 b 3$.
(iii) $H=(30)$: then E has Cremona label 50a3 50b1 50b2 45004 .

Our second result determines $\Phi_{\mathbb{Q}}^{\star}(6, G)$ for each $G \in \Phi(1)$:
Theorem 3. For each $G \in \Phi(1)$, the set $\Phi_{\mathbb{Q}}^{\star}(6, G)$ is given in the following table:

G	$\Phi_{\mathbf{Q}}^{\star}(6, G)$
$1)$	$\{(1),(2),(3),(4),(5),(6),(7),(9),(10),(12),(13),(14),(15)$,
	$(18),(21),(2,2),(2,6),(2,10),(2,14),(2,18),(3,3),(3,9),(4,4),(6,6)\}$
(2)	$\{(2),(4),(6),(8),(10),(12),(14),(16),(18),(2,2)$,
	$(2,6),(2,10),(2,14),(2,18),(3,6),(3,12),(6,6)\}$
(3)	$\{(3),(6),(9),(12),(15),(21),(30),(2,6)$,
(4)	$(3,3),(3,6),(3,9),(6,6)\}$
(5)	$\{(4),(8),(12),(2,4),(2,8),(2,12),(3,12),(4,4)\}$
(6)	$\{(5),(10),(15),(30),(2,10)\}$
(7)	$\{(6),(12),(18),(2,6),(2,18),(3,6),(3,12),(6,6)\}$
(8)	$\{(7),(14),(2,14)\}$
(9)	$\{(8),(16),(2,8)\}$
(10)	$\{(10),(2,10)\}$
(12)	$\{(12),(2,12),(3,12)\}$
$(2,2)$	$\{(2,4),(2,8),(4,4)\}$
$(2,4)$	$\{(2,6),(2,12),(6,6)\}$
$(2,6)$	$\{(2,8)\}$
$(2,8)$	$\{(2,2),(2,4),(2,6),(2,8),(2,12),(6,6)\}$

Remark 1. In [15] it has been found that $(4,12) \in \Phi_{\mathbb{Q}}(6) \backslash \Phi_{\mathbb{Q}}^{\star}(6)$. In particular, $(4,12) \in \Phi(6) \backslash \Phi^{\infty}(6)$. Moreover, in [15] it has been proved that if E / \mathbb{Q} is an elliptic curve defined and K / \mathbb{Q} is a sextic extension such that $E(K)_{\text {tors }}=(4,12)$ then the Cremona label of E is 162 d 1 or 1296 h 1 and $K=\mathbb{Q}(\alpha, i)$ where $\alpha^{3}-3 \alpha-4$. In particular, these elliptic curve are $\overline{\mathbb{Q}}$-isomorphic and $109503 / 64 \in J_{\mathbb{Q}}(6)$.
Corollary 4. If $J_{\mathbb{Q}}(6)=\{109503 / 64\}$, then $\Phi_{\mathbb{Q}}(6)=\Phi_{\mathbb{Q}}^{\star}(6) \cup\{(4,12)\}$ and $\Phi_{\mathbb{Q}}(6, G)=\Phi_{\mathbb{Q}}^{\star}(6, G)$ if $G \neq(1),(3)$ or $\Phi_{\mathbb{Q}}(6, G)=\Phi_{\mathbb{Q}}^{\star}(6, G) \cup\{(4,12)\}$ if $G=(1),(3)$.
Conjecture 5. $\Phi_{\mathbb{Q}}(6)=\Phi_{\mathbb{Q}}^{\star}(6) \cup\{(4,12)\}=\Phi_{\mathbb{Q}}(2) \cup \Phi_{\mathbb{Q}}(3) \cup\{(30),(2,18),(3,9),(3,12),(4,12),(6,6)\}$.
Notation. Any specific elliptic curves mentioned in this paper will be referred to by Cremona label and a link to the corresponding LMFDB page [30] for the ease of the reader. Conjugacy classes of subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ be referred to by the labels introduced by Sutherland in [40, §6.4]. We write $G=H$ (or $G \subseteq H$) for the fact that G is isomorphic to H (or to a subgroup of H resp.) without further detail on the precise isomorphism. By abuse of notation, we write $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{r} \mathbb{Z}=\left(n_{1}, \ldots, n_{r}\right)$.

Remark 2. All of the computations in this paper have been performed using Magma 3] and some of the code has been taken from [8]. All of the code needed to reproduce these computations can be found at [7].
1.1. Acknowledgments. The authors would like to thank Álvaro Lozano-Robledo and Jeremy Rouse for helpful conversations while working on this project.

2. Background Information

Central to proving the main results of this paper is understanding fields of definition of the points of order n on an elliptic curve defined over \mathbb{Q}. In order to do this we introduce an auxiliary object called the mod n Galois representations associated to the torsion points of elliptic curves. First, fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}.

Given an elliptic curve E / \mathbb{Q} and an integer $n \geq 2$ we let $E[n]=\{P \in E(\overline{\mathbb{Q}}) \mid[n] P=\mathcal{O}\}$ be the subgroup of $E(\overline{\mathbb{Q}})$ consisting of the point of order dividing n. The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ act coordinate-wise on the point of $E[n]$ and this action induces a representation

$$
\rho_{E, n}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}(E[n]) .
$$

It is a classical result that $E[n]$ is a free rank two $\mathbb{Z} / n \mathbb{Z}$-module and thus fixing a basis $\{P, Q\}$ for $E[n]$ we have that $\operatorname{Aut}(E[n])$ is isomorphic to a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$. Therefore, we can write the Galois representation as

$$
\rho_{E, n}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z}) .
$$

where the image of $\rho_{E, n}$, denoted $G_{E}(n)$, is determined up to conjugacy (i.e. a choice of basis for $E[n]$). If we let $\mathbb{Q}(E[n])=\mathbb{Q}(\{x, y \mid(x, y) \in E[n]\})$ be the field of definition of the n-torsion points on E, then $\mathbb{Q}(E[n]) / \mathbb{Q}$ is a Galois extension and since $\operatorname{ker} \rho_{E, n}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}(E[n]))$, from elementary Galois theory we have that $\operatorname{Gal}(\mathbb{Q}(E[n]) / \mathbb{Q}) \simeq G_{E}(n)$.

Given a point $R \in E[n]$, we will denote the x - and y-coordinates of R by $x(R)$ and $y(R)$ respectively and the field of definition for R will be be denoted by $\mathbb{Q}(R)=\mathbb{Q}(x(R), y(R))$. From Galois theory, we know that there is a subgroup \mathcal{H}_{R} of $\operatorname{Gal}\left(\mathbb{Q}(E[n] / \mathbb{Q})\right.$ such that $\mathbb{Q}(R)$ is the subfield of $\mathbb{Q}(E[n])$ fixed by \mathcal{H}_{R}. Letting $H_{R}=\rho_{E, n}\left(\mathcal{H}_{R}\right)$ we have the following two facts.
(1) $[\mathbb{Q}(R): \mathbb{Q}]=\left[G_{E}(n): H_{R}\right]$
(2) If $\widehat{\mathbb{Q}(R)}$ is the Galois closure of $\mathbb{Q}(R)$ in $\overline{\mathbb{Q}}$ and $N_{G_{E}(n)}\left(H_{R}\right)$ is the normalizer of H_{R} in $G_{E}(n)$, then

$$
\operatorname{Gal}(\widehat{\mathbb{Q}(R)} / \mathbb{Q}) \simeq G_{E}(n) / N_{G_{e}(n)}\left(H_{r}\right) .
$$

Practically, if we are given $G_{E}(n)$ up to conjugation, one can deduce many algebraic properties of $\mathbb{Q}(E[n])$. In particular, since $E[n]$ is a free rank $2 \mathbb{Z} / n \mathbb{Z}$-module the n torsion points of E can be (non-canonically) identified with elements of $(\mathbb{Z} / n \mathbb{Z})^{2}$ by taking their coordinate vectors with respect to a fixed basis. With this identification, the group H_{R} is exactly the stabilizer of the coordinate vector of R with respect to the action of $G_{E}(n)$ on $(\mathbb{Z} / n \mathbb{Z})^{2}$. Thus, we can compute all possible degrees of $\mathbb{Q}(R) / \mathbb{Q}$ where R is a point of exact order n, by computing the index of the stabilizer of each element of $(\mathbb{Z} / n \mathbb{Z})^{2}$ of order n inside $G_{E}(n)$. Lastly, as consequence of the Weil pairing we always have that the determinant map det: $G_{E}(n) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$is surjective and because $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ contains complex conjugation, $G_{E}(n)$ must contain an element of trace 0 and determinant -1 . For more details about this see [41, Proposition 2.2]
2.1. Classifications of the Possible Images of Galois Representations. One of the first major results that will be regularly used is the complete classification of elliptic curves with cyclic isogenies. We remind the reader that an elliptic curve E / K has an n-isogeny if there is degree n map $\phi: E \rightarrow E^{\prime}$ such that ker ϕ is a cyclic subgroup of $E[n]$ of order n. If E / K has a cyclic n-isogeny, we know that $E[n]$ contains a Galois-stable cyclic subgroup of order n, and thus $G_{E}(n)$ is conjugate to a subgroup of the the Borel group of upper triangular matrices in $\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$. For the sake of concision, whenever E / \mathbb{Q} has a cyclic n-isogeny defined over \mathbb{Q}, we will simply say that E has a rational n-isogeny.
Theorem 6 (Mazur [32] and Kenku [24, 25, 26, 27]). Let E / \mathbb{Q} be an elliptic curve with a rational n-isogeny. Then

$$
\begin{equation*}
n \in\{1, \ldots 19,21,25,27,37,43,67,163\} . \tag{1}
\end{equation*}
$$

Further, there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves with a rational n-isogeny for all $n \in$ $\{1, \ldots, 10,12,13,16,18,25\}$ and only finitely many for all the other n listed in (1) and if $n \in\{14,19,27,43,67,163\}$ then E has complex multiplication.

The last results that we will need are related to the classification of possible images of Galois representations associated to rational elliptic curves of various levels. The first set of results are contained in 41] where Zywina classifies (among other things) the complete list of possible images of the $\bmod \ell$ Galois representations associated to rational elliptic curves for all $\ell \leq 13$. We only need the classification up to $\ell=13$ because as mentioned above $R_{\mathbb{Q}}(6)=\{2,3,5,7,13\}$. For all of the possible images except three, Zywina gives a complete description of the elliptic curves over \mathbb{Q} whose $\bmod p$ Galois representation has image conjugate to a subgroup of a given group. Two of the three remaining cases were handled in [1] by Balakrishnan et al. using the Chabauty-Kim method to determine all the rational points on "cursed" genus 3 modular curve. While a classification for the last remaining image ($13 S 4$ in Sutherland's notation) is still just a conjecture, since any curve with this image does not have a point of order 13 defined over a sextic extension for our purposes the classification is complete. The second
set of results we will use is contained in 38] where Rouse and Zureick-Brown give a complete account of the possible 2-adic ${ }^{2}$ images of Galois representations of elliptic curves without complex multiplication defined over \mathbb{Q}. Besides listing each of the possible images they give a completely determine of the associated moduli spaces as well, this includes describing all of the rational points on each modular curves.

Finally a specific result about rational isogenies for torsion growth over sextic field.
Lemma 7. Let E / \mathbb{Q} be an elliptic curve without complex multiplication, K / \mathbb{Q} a sextic field and $P_{p} \in E(K)_{\text {tors }} a$ point of odd prime order p. Then E has a rational p-isogeny, except if E has Cremona label $2450 b a 1$ or $2450 b d 1$, and $p=7$, where there is not rational 7-isogenies. Moreover, in those last cases, the unique sextic fields where the torsion grows are $K=\mathbb{Q}(E[2])$ and $K^{\prime}=\mathbb{Q}\left(P_{7}\right)\left(K^{\prime} / \mathbb{Q}\right.$ is a non-Galois $)$, where $E(K)_{\text {tors }}=(2,2)$ and $E\left(K^{\prime}\right)_{\text {tors }}=(7)$ respectively.

Proof. We have that $p \in R_{\mathbb{Q}}(6)=\{2,3,5,7,13\}$. Looking at the Table 4 we see that, unless $G_{E}(7)$ is conjugate to 7 Ns .2 .1 , is must be that E has a rational p-isogeny. For the case 7 Ns .2 .1 , [41, Theorem 1.5 (iii)] says that E has Cremona label 2450ba1 or 2450bd1. For those two curves we have that they have no rational isogenies and the unique exceptional prime ($\rho_{E, p}$ is non-surjective) for E is $p=7$, then by Table 4 we have that the sextic fields where the torsion grows are $K=\mathbb{Q}(E[2])$ and $K^{\prime}=\mathbb{Q}\left(P_{7}\right)$ and computing the torsion over that number fields we obtain the desired result.
2.2. Elliptic Curves with Complex Multiplication. Let $\Phi^{\mathrm{CM}}(d)$ be the set consisting of the torsion subgroups ofelliptic curves with complex multiplication (or CM for short) defined over field of degree d. Table 1 lists the sets $\Phi^{\mathrm{CM}}(d)$ such that $d \mid 6$ since these will be that ones that we use in this article. Proofs of the results in Table 1 can be found in [36, 34, 10, 37, 5].

d	$\Phi^{\mathrm{CM}}(d)$
1	$\{(1),(2),(3),(4),(6),(2,2)\}$
2	$\Phi^{\mathrm{CM}}(1) \cup\{(7),(10),(2,4),(2,6),(3,3)\}$
3	$\Phi^{\mathrm{CM}}(1) \cup\{(9),(14)\}$
6	$\Phi^{\mathrm{CM}}(2) \cup \Phi^{\mathrm{CM}}(3) \cup\{(18),(19),(26),(2,14),(3,6),(3,9),(6,6)\}$

3. Proof of the Main Auxiliary Results

The determination of $\Phi_{\mathbb{Q}}^{\star}(6)$ and $\Phi_{\mathbb{Q}}^{\star}(6, G)$ will rest on Proposition 8 and 9 for the case non-CM and CM, respectively.
Proposition 8. Let E / \mathbb{Q} be an elliptic curve without complex multiplication and K / \mathbb{Q} a sextic number field such that $E(\mathbb{Q})_{\text {tors }}=G$ and $E(K)_{\text {tors }}=H$.
(a) 11, 17 and 19 do not divide the order of H.
(b) Let G_{2} (resp. H_{2}) denote the 2-primary part of G (resp. H) then the only possible 2-primary torsion growth are given in Table 2. For each entry in the table a $(-)$ indicates that the growth from G_{2} to H_{2} cannot happen. If the growth from G_{2} to H_{2} is possible, we give the modular curve in the notation of 38] that parameterizes elliptic curves with this growth. That is, $E(\mathbb{Q})_{\text {tors }}$ contains a subgroup isomorphic to G_{2} and there is a sextic extension K / \mathbb{Q} such that $E(K)_{\text {tors }}$ contains a subgroup isomorphic to H_{2} if and only if E corresponds to a rational point on the given modular curves.
(c) If $(4) \subseteq G$, then $(20) \nsubseteq H$.
(d) If $(8) \subseteq G$, then $(24) \nsubseteq H$.
(e) If $(2,2) \subseteq G$, then $(2,10) \nsubseteq H$.
(f) If $(2,4) \subseteq G$, then $(2,12) \nsubseteq H$.
(g) If $G=(12)$, then $H \neq(24)$.
(h) If $G=(2,2)$, then $(2,14) \nsubseteq H$.

[^2]| G_{2} | (1) | (2) | (4) | (8) | (16) | $(2,2)$ | $(2,4)$ | $(2,8)$ | $(4,4)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | X_{1} | X_{1} | X_{20} | - | - | X_{1} | - | - | $X_{20 b}$ |
| (2) | - | X_{6} | X_{13} | $X_{102}, X_{36 a}$ | $X_{235 m}$ | X_{6} | - | - | - |
| (4) | - | - | $X_{13 h}$ | $X_{36 n}$ | - | - | $X_{13 h}$ | $X_{102 k}$ | $X_{60 d}$ |
| (8) | - | - | - | $X_{102 p}$ | $X_{235 l}$ | - | - | $X_{102 p}$ | - |
| $(2,2)$ | - | - | - | - | - | X_{8} | $X_{25}, X_{8 d}$ | $X_{193}, X_{96 q}, X_{98 o}$ | - |
| $(2,4)$ | - | - | - | - | - | - | $X_{25 n}$ | $X_{96 t}, X_{98 e}$ | $X_{58 i}$ |
| $(2,8)$ | - | - | - | - | - | - | - | $X_{193 n}$ | - |

Table 2. Classification of the possible growth in 2-primary component over a sextic field.
(i) If $G=(1)$ and $(3,6) \subseteq H$, then $(6,6) \subseteq H$.
(j) If $G=(3)$, then $H \neq(3,12)$.
(k) $H \neq(20)$.
(l) If $G=(3)$, then $H \neq(18)$.
(m) If $(2,2) \subseteq G$, then $(2,18) \nsubseteq H$.
(n) If $G=(3)$, then $H \neq(2,18)$.
(o) If $G=(7)$, then $(21) \nsubseteq H$.
(p) If $G=(2)$, (4) or (6), then $H \neq(24)$.
(q) $(26) \nsubseteq H$.
(r) $H \neq(27)$.
(s) $H \neq(28)$.
(t) If $G \neq(3)$ or (5), then $H \neq(30)$.
Proof. (a) By [14] we have $11,17,19 \notin R_{\mathbb{Q}}(6)=\{2,3,5,7,13\}$.
(b) As mentioned in Section 2, Rouse and Zureick-Brown completely classify all of the possible 2-adic images of Galois representations associated to elliptic curves without CM defined over \mathbb{Q} in [38]. For each of the possible images the second author together with Lozano-Robledo computed the degree of the field of definition of the $\left(2^{i}, 2^{i+j}\right)$ torsion for $i+j \leq 6$ in [12] and recoded the data in a text file titled 2primary_Ss.txt. Using the results of [12] we write a program that takes as its input a degree d and returns an associative array whose keys are all the possible 2-primary parts of $E(\mathbb{Q})_{\text {tors }}$ and $E(K)_{\text {tors }}$ of elliptic curves defined over \mathbb{Q} and base-extended to a degree d number field K over \mathbb{Q}. The objects associated with each of these curves are the labels of the modular curves (in the notation of [38]) that parameterize each of the possible growths in two primary components. This algorithm and its output can be found in [7] in the file labeled RZB_Search.txt.
(c), (d), (e) and (f): See Remark below Theorem 7 of [13].
(g) The 2-divisibility method [20, Section 3] asserts that if a point Q satisfies $2 Q=P$ then $[K(Q): K] \leq 4$ (see [20, Remark 3.2]). In the particular case of $K=\mathbb{Q}$ and P of order 12, we have that (24) is a subgroup of some group in $\Phi_{\mathbb{Q}}(d)$ for $d \leq 4$. But we know that this can only happen in a quartic extension [14, Corollary 8.7] of \mathbb{Q} and thus cannot happen over a sextic extension.
(h) Suppose that $G=(2,2)$ and $(2,14) \subseteq H$. Since $(2,14)$ is not a subgroup of any group in $\Phi_{\mathbb{Q}}(d,(2,2))$ for $d=2,3$ by [17, Theorem 2] and [16, Theorem 1.2] respectively, we have that E gain a point of order 7 over a sextic field, and not over any number field of degree less than 6 . By Lemma 7 we have that, unless $G_{E}(7)$ is conjugate to 7 Ns .2.1, E has a rational 7 -isogeny. In the former case we have $G=(1)$ therefore we can exclude it for the rest of the proof. Now, since $G=(2,2)$, then E is 2-isogenous (over \mathbb{Q}) to two curves E^{\prime} and $E^{\prime \prime}$, such that E, E^{\prime}, and $E^{\prime \prime}$ are all non-isomorphic pairwise. Further, there is a rational 4 -isogeny from E^{\prime} to $E^{\prime \prime}$ that is necessarily cyclic. Moreover, since E has a rational 7 -isogeny, if follows that E^{\prime} also has a rational 7 -isogeny, and therefore E^{\prime} would have a rational 28 -isogeny which is impossible by Theorem 6 .
(i) Suppose that $G=(1)$ and $(3,6) \subseteq H$. Checking Table 4 we see that the only way that we can go from trivial torsion to having full 3-torsion over a sextic extension of \mathbb{Q} is for $G_{E}(3)$ is conjugate to 3B.1.2. Therefore, we can pick a basis P_{3}, P_{3}^{\prime} for $E[3]$ such that $\left[\mathbb{Q}\left(P_{3}\right): \mathbb{Q}\right]=2$ and $\left[\mathbb{Q}\left(P_{3}^{\prime}\right): \mathbb{Q}\right]=3$ and $K=\mathbb{Q}\left(P_{3}, P_{3}^{\prime}\right)$ is an S_{3}-extension of \mathbb{Q}, since 3B.1.2 is isomorphic to S_{3}. Next, in order to pick up a point P_{2} not defined over \mathbb{Q}, it must be that $\left[\mathbb{Q}\left(P_{2}\right): \mathbb{Q}\right]=3$ where $G_{E}(2)$ is conjugate to 2 Cn or $\rho_{E, 2}$ is surjective. In the first case we have $\mathbb{Q}\left(P_{2}\right)=\mathbb{Q}(E[2]) \subseteq K$. In the second case $\mathbb{Q}(E[2])$ is the Galois closure of $\mathbb{Q}\left(P_{2}\right)$, that is the S_{3}-extension of \mathbb{Q} that contains $\mathbb{Q}\left(P_{2}\right)$. Therefore, $\mathbb{Q}(E[2])=\mathbb{Q}(E[3])$. In both case we obtain that $(6,6) \subseteq E(K)_{\text {tors }}$. Therefore H cannot equal $(3,6)$.
(j) If $G=(3)$ and $H=(3,12)$, then we know that E must have a rational 3 -isogeny and from part (b) in order for E / \mathbb{Q} to gain a point of order 4 over a sextic extension E must correspond to a \mathbb{Q}-rational point on the modular curve X_{20}. Taking the fiber product of $X_{0}(3)$ and X_{20} we get a singular genus 1 curve C whose desingularization is the elliptic curve E^{\prime} / \mathbb{Q} with Cremona label 48 a3 and $E^{\prime}(\mathbb{Q})=(2,4)$. Inspecting the rational points on C we get that there are 4 non-singular non-cuspidal points corresponding to the j-invariants 109503/64 and $-35937 / 4$. For each of these j-invariants there is exactly one \mathbb{Q}-isomorphism class that has a point of order 3 defined over \mathbb{Q}. Representatives of these classes are the curves with Cremona label 162 a 1 and 162d1. Checking the 3 -division fields of each of these curves, we see that neither gains full 3 -torsion and a point of order 6 over the same sextic extension of \mathbb{Q}.
(k) If $(2) \subseteq G$ or $G=(10)$, then E has a rational point of order 2 and the 2-power division fields are all 2-extensions of \mathbb{Q}. Therefore, if $H=(20)$ it must be that if P_{4} is the point of order 4 over K, then $\mathbb{Q}\left(P_{4}\right)$ is a quadratic extension of \mathbb{Q}. Further, by Table 4 , the only way that E can have a point P_{5} of order 5 over K is if $\mathbb{Q}\left(P_{5}\right)$ is defined over a quadratic extension of \mathbb{Q}. If K is a sextic extension then it must be that $\mathbb{Q}\left(P_{4}\right) \subseteq \mathbb{Q}\left(P_{5}\right)$ and E actually has a point of order 20 defined over a quadratic extension which is impossible.

Lastly, if $G=(1)$ or (5) and $H=(20)$, then we E gains a point P_{4} of order 4 over a degree 3 or 6 field and from part (b), the only way this can happen is if E corresponds to a rational point on the curve X_{20} from [38]. Again by Lemma 7 , in order to gain a point of order 5 over a sextic extension, E must have a rational 5 -isogeny. Computing the fiber product of X_{20} and $X_{0}(5)$ we get a genus 3 hyperelliptic curve C with $\operatorname{Aut}(C)=(2,2)$. The automorphism group of C is generated by the hyperelliptic involution and another automorphism of order two, call it ϕ. The curve, E^{\prime} obtained by quotienting out by ϕ is the elliptic curve with Cremona label 80a4 which has $E^{\prime}(\mathbb{Q})=(4)$. Computing the preimage of the 4 points on E^{\prime} we see that $C(\mathbb{Q})$ consists of exactly 3 points, two of which are singular and one is a cusp at infinity. Thus, there are no elliptic curves over \mathbb{Q} that gain a point of order 4 over a sextic and have a rational 5 -isogeny.
(1) Suppose towards a contradiction that $G=(3)$ and $H=(18)$ and let P_{2} and P_{9} be points in $E(K)$ of order 2 and 9 respectively. Since $E(\mathbb{Q})[2]$ is trivial it must be that $\left[\mathbb{Q}\left(P_{2}\right): \mathbb{Q}\right]=3$ and from [14, Proposition 4.6] we have that $\left[\mathbb{Q}\left(P_{9}\right): \mathbb{Q}\right]=2,3$ or 6 . From [17] we know that $\left[\mathbb{Q}\left(P_{9}\right): \mathbb{Q}\right] \neq 2$ and from [16] we know that $\left[\mathbb{Q}\left(P_{9}\right): \mathbb{Q}\right] \neq 3$ since there are no elliptic curves who torsion grows from (3) to (18) over a cubic. So it must be that $\left[\mathbb{Q}\left(P_{2}\right): \mathbb{Q}\right]=3,\left[\mathbb{Q}\left(P_{9}\right): \mathbb{Q}\right]=6$ and $K=\mathbb{Q}\left(P_{9}\right)$. So we search in Magma for subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / 9 \mathbb{Z})$ that would correspond to an elliptic curve with a rational point of order 3 and a point of order 9 defined over a degree 6 extension of \mathbb{Q}. We get that this can happen in 3 different ways according to the Galois closure of $\mathbb{Q}\left(P_{9}\right)$. That is, $\operatorname{Gal}(\widehat{K} / \mathbb{Q}) \cong \mathcal{C}_{6}, S_{3}$, or $\mathcal{C}_{3} \times S_{3}$. In the first two cases, we have that $\widehat{K}=K=\mathbb{Q}\left(P_{9}\right)$ and since $\mathbb{Q}\left(P_{2}\right) \subseteq \mathbb{Q}\left(P_{9}\right)$ we know that the Galois closure of $\mathbb{Q}\left(P_{2}\right)$, which is $\mathbb{Q}(E[2])$, is contained in K and this is a contradiction to the assumption that $H=(18)$, and cyclic. Therefore, it must be that $\operatorname{Gal}(\widehat{K} / \mathbb{Q})=\mathcal{C}_{3} \times S_{3}$ and we have the following field diagram:

where Δ is the discriminant of E and Δ is not a square since $\mathbb{Q}(E[2]) \nsubseteq K$. But, since there is unique subgroup of $\mathcal{C}_{3} \times S_{3}$ of index 2 , we know that there is a unique quadratic extension of \mathbb{Q} inside \widehat{K} and by the above field diagram it must be that $\mathbb{Q}(\sqrt{\Delta})$ is inside of K. This means that $K=\mathbb{Q}\left(P_{9}\right)=\mathbb{Q}\left(P_{2}, \sqrt{\Delta}\right)=\mathbb{Q}(E[2])$ which is a Galois extension of \mathbb{Q} giving us a contradiction.
(m) We have that $(2,18)$ is not a subgroup of any group in $\Phi_{\mathbb{Q}}(d)$ for $d=2,3$. Therefore we have that there must exist a point P_{3} of order 3 such that $\left[\mathbb{Q}\left(P_{3}\right): \mathbb{Q}\right]=6$ and there is not other point of order 3 defined over a number field of degree less than 6 . According to Table 4 this cannot happen.
(n) Suppose towards a contradiction that $G=(3)$ and $H=(2,18)$. Let P_{9} be the point of order 9 defined over K. In this case we have that $\left[\mathbb{Q}\left(P_{9}\right): \mathbb{Q}\right]=2,3$ or 6 and $[\mathbb{Q}(E[2]): \mathbb{Q}]=3$ or 6 . We can exclude the case $\left[\mathbb{Q}\left(P_{9}\right): \mathbb{Q}\right]=2$ since (9) is not the subgroup of some group in $\Phi_{\mathbb{Q}}(2,(3))$ (see [17, Theorem 2]). From [16] we know that both of these indices cannot be 3 . Suppose that $\left[\mathbb{Q}\left(P_{9}\right): \mathbb{Q}\right]=3$ and $[\mathbb{Q}(E[2]): \mathbb{Q}]=6$. This means that $\mathbb{Q}\left(P_{9}\right) / \mathbb{Q}$ is a degree 3 subfield of $\mathbb{Q}(E[2])$ and so E must have a point of order 2 defined over $\mathbb{Q}\left(P_{9}\right)$. In this case we would have $\mathbb{Q}\left(P_{9}\right) / \mathbb{Q}$ is a cubic extension where $E\left(\mathbb{Q}\left(P_{9}\right)\right)_{\text {tors }}=(18)$ but this can not happen from [16, Theorem 1.2]. Therefore it must be that $\left[\mathbb{Q}\left(P_{9}\right): \mathbb{Q}\right]=6$ and $K=\mathbb{Q}\left(P_{9}\right)$. Just as in part (11) there are only 3 possible options for $\operatorname{Gal}(\widehat{K} / \mathbb{Q})$ they are \mathcal{C}_{6}, S_{3}, and $\mathcal{C}_{3} \times S_{3}$. The third case gives the exact same contradiction as in part (11), while if $\operatorname{Gal}(\widehat{K} / \mathbb{Q})=\mathcal{C}_{6}$, or S_{3}, then $\mathbb{Q}\left(P_{9}\right) / \mathbb{Q}$ is a Galois extension and $\left\langle P_{9}\right\rangle$ is a cyclic Galois stable subgroup of $E(K)$. Therefore $G_{E}(9)$ must be conjugate to a subgroup of the Borel subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / 9 \mathbb{Z})$, implying that $\left\langle P_{9}\right\rangle$ must be the kernel of a rational n-isogeny and $\mathbb{Q}\left(P_{9}\right) / \mathbb{Q}$ must be a cyclic extension. Therefore, $\operatorname{Gal}(K / \mathbb{Q})=\mathcal{C}_{6}$ and E has a rational 9-isogeny. Since $\mathbb{Q}(E[2]) \subseteq \mathbb{Q}\left(P_{9}\right)$ and $\mathbb{Q}(E[2]) / \mathbb{Q}$ is Galois, it must be that $\operatorname{Gal}(\mathbb{Q}(E[2]) / \mathbb{Q}) \simeq \mathcal{C}_{3}$ which can only happen if E has square discriminant. Checking in Magma we see that there are no curves with a rational 9 -isogeny and square discriminant.
(0) By [17, Theorem 2] and [16, Theorem 1.2] we have that if E gains a point P_{3} of order 3 over a sextic field then $\left[\mathbb{Q}\left(P_{3}\right): \mathbb{Q}\right]=6$ and there is no other point of order 3 defined over a number field of degree less than 6 . But this is impossible by Table 4 .
(p) Suppose $G=(2),(4)$ or (6). In all of these cases E has a rational point of order 2 and so the Tate module $T_{2}(E)$ is a tower of 2 -extensions. Therefore, if P_{8} is a point of order 8 on E defined over a sextic extension of \mathbb{Q}, then it must be that $\left[\mathbb{Q}\left(P_{8}\right): \mathbb{Q}\right]=2$ and thus, by $[8$, Lemma 4.6$], E$ has a rational 8-isogeny. Further, if E gains a point of order 3 over a sextic extension of \mathbb{Q}, then by Lemma $7 E$ must have a rational 3-isogeny. Therefore in all of these cases, if $H=(24)$ then E must have a rational 24-isogeny which is impossible by Theorem 6 .
(q) Let be $P_{2}, P_{13} \in E(K)_{\text {tors }}$ of order 2 and 13 respectively. By Lemma $7, E$ has a rational 13-isogeny. In the case that $\mathbb{Q}\left(P_{2}\right)=\mathbb{Q}$ we have that there is a rational 26 -isogeny which cannot happen by Theorem 6, Now, if $\mathbb{Q}\left(P_{2}\right) \neq \mathbb{Q}$, then $\left[\mathbb{Q}\left(P_{2}\right): \mathbb{Q}\right]=3$ and $\mathbb{Q}\left(P_{2}\right) \subseteq \mathbb{Q}\left(P_{13}\right)$. Note that $\mathbb{Q}\left(P_{2}\right) \neq \mathbb{Q}\left(P_{13}\right)$, since (26) is not a subgroup of some group in $\Phi_{\mathbb{Q}}(3)$. Therefore $\left[\mathbb{Q}\left(P_{13}\right): \mathbb{Q}\right]=6$ and Table 4 shows that $G_{E}(13)$ is conjugate to $13 B .3 .4$ or 13B.4.1. In both cases we have that the field $\mathbb{Q}\left(P_{13}\right)$ is Galois and cyclic of order 6 (see (2) from Section 2). If $\rho_{E, 2}$ is non-surjective, then the Galois group of $\mathbb{Q}\left(P_{2}\right)$ is isomorphic to $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ contradicting the fact that $\mathbb{Q}\left(P_{2}\right) \subsetneq \mathbb{Q}\left(P_{13}\right)$. The remaining case is when $G_{E}(2)$ is conjugate to 2 Cn . The fiber product of the genus 0 modular curves $X_{0}(13)$ and $X_{2 \mathrm{Cn}}$ is the elliptic curve with Cremona label 52 a 2 who has only the affine point $(0,0)$. This point does not correspond to an elliptic curve in $X_{0}(13)$ or $X_{2 \mathrm{Cn}}$. Therefore we have proved that $(26) \nsubseteq E(K)_{\text {tors }}$.
(r) Suppose that $H=(27)$, then $G=(1),(3)$ or (9). By Lemma 7, E have a rational 3-isogeny. Therefore, $G_{E}(27)$ must conjugate to a subgroup of $\pi^{-1}(B(3))$, where $B(3)$ is the Borel subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ and $\pi: \mathrm{GL}_{2}(\mathbb{Z} / 27 \mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$. Constructing a list of the subgroups of $\pi^{-1}(B(3))$ with surjective determinant, containing an element corresponding to complex conjugation, and not conjugate to a subgroup of $B(27)$ (since the only curves with a rational 27 -isogeny have CM) we find there are 687 of possible images for $\rho_{E, 27}$. Of those 687 of images, 42 of them would give rise to an elliptic curve with a point of order 27 over a sextic. Among those 42 possibilities there are exactly 7 maximal elements all of which are conjugate to a subgroup of $B(9)$. Five of these 7 maximal groups reduce to subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ that are conjugate to subgroups of the split Cartan subgroup. If E were an elliptic curve whose $\bmod 27$ Galois representation is conjugate to a subgroup of one of these 5 groups, then E would have to have independent rational 3 - and 9 -isogenies. From
[35, Lemma 7], any elliptic curve with independent rational 3- and 9 -isogenies is isogenous to an elliptic curve with a rational 27 -isogeny and from [31, Table 4] there is only one elliptic curve (up to $\overline{\mathbb{Q}}$-isomorphism) with a rational 27 -isogeny. The $\overline{\mathbb{Q}}$-isomorphism class of curves with a 27 -isogeny has j-invariant equal to $-2^{15} \cdot 3 \cdot 5^{3}$ and consist of all quadratic twists of the elliptic curve with Cremona Reference 27a2. Since isogeny classes are invariant under quadratic twist it is sufficient to check the isogeny class of 27 a 2 in the LMFDB database [30] to see the only way that E can have an independent rational 3- and 9 -isogeny is if $j(E)=0$ and E thus has CM. Therefore, $G_{E}(27)$ must be conjugate to a subgroup of one of the remaining two maximal groups. These two groups are

$$
G_{1}=\left\langle\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
10 & 22 \\
18 & 10
\end{array}\right)\right\rangle \text { and } G_{2}=\left\langle\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
19 & 4 \\
9 & 19
\end{array}\right)\right\rangle
$$

Working in Magma we see that $G_{1} \cap \mathrm{SL}_{2}(\mathbb{Z} / 27 \mathbb{Z})$ (resp. $G_{2} \cap \mathrm{SL}_{2}(\mathbb{Z} / 27 \mathbb{Z})$) is conjugate to a subgroup of the group with Cummins-Pauli label $27 A^{2}$ (resp. $27 B^{4}$). The modular curves that correspond to the group $27 A^{2}$ and $27 B^{4}$ are genus 2 and 4 respectively and it was shown in the proof of Proposition 5.18 in [8], that the only \mathbb{Q}-rational points on these curves are cusps. Therefore there are no elliptic curves over \mathbb{Q} whose mod 27 image is contained in either G_{1} or G_{2}.
(S) If $H=(28)$ then E gain a point of order 7 over a sextic field. Then, by Lemma 7 , if E has not a rational 7 -isogeny then $E(K)_{\text {tors }}=(7)$ or $E(K)_{\text {tors }}=(2,2)$. Therefore we have that E must have a rational 7 -isogeny. Now, first suppose that $(2) \subseteq G$, then E would have a rational 14 -isogeny defined over \mathbb{Q} and from Theorem 6 this can only happen if E has complex multiplication.

If $G=(1)$ and $H=(28)$ then E must gain a point of order 4 over a cubic or a sextic extension of \mathbb{Q} which from part (b) can only happen if E corresponds to a rational point on the genus 0 curve X_{20} from [38]. So it must be that E comes from a point on X_{20} and a point on $X_{0}(7)$. Computing the fiber product of $X_{0}(7)$ and X_{20}, we get a genus 3 hyperelliptic C with $\operatorname{Aut}(C)=(2,2,2)$. Quotienting out by one of the automorphisms of order 2 that is not the hyperelliptic involution we get the elliptic curve E^{\prime} with Cremona label 14 a 4 satisfying $E^{\prime}(\mathbb{Q})=(6)$. Pulling the 6 points in $E^{\prime}(\mathbb{Q})$ back to $C(\mathbb{Q})$ we see that there are exactly 4 non-cuspidal and non-singular rational points on C corresponding to the j-invariants $-3^{3} \cdot 13 \cdot 479^{3} / 2^{14}$ and $3^{3} \cdot 13 / 2^{2}$. From [41, Theorem 1.5], all of the twists of these curves have the kernel of their rational 7 -isogeny defined over a cyclic sextic extension of \mathbb{Q} except for two of them. Further, the only way that E can have the 2-primary component of its torsion grows from trivial to (4) over a cyclic sextic extension of \mathbb{Q} is if it actually grow over a quadratic extension of \mathbb{Q}. This is because the point of order 4 would define the kernel of a rational isogeny and hence by [8, Lemma 4.8] the degree of its field of definition would have to divide $\varphi(4)=2$, but this cannot happen by [17, Theorem 2]. Therefore, we can rule out these curves since $\mathbb{Q}\left(P_{7}\right)$ can never coincide with $\mathbb{Q}\left(P_{4}\right)$. Next from [41, Theorem $1.5]$, we know that for each of these j-invariants there are exactly one twist (up to \mathbb{Q}-isomorphism) such that the kernel of their rational 7 -isogeny are defined over a cyclic cubic extensions of \mathbb{Q}. The \mathbb{Q}-isomorphism classes in question are represented by the elliptic curves with Cremona label 338 b 1 and 16562 be 2 and we eliminate these by checking that the 2 -division field and the cubic field where the kernel of the rational 7 -isogeny intersect only in \mathbb{Q}.

Next if $G=(7)$, again E must have a rational 7 -isogeny and so in order to gain a point of order 4 it must have j-invariant $-3^{3} \cdot 13 \cdot 479^{3} / 2^{14}$ and $3^{3} \cdot 13 / 2^{2}$, but none of these curves have a rational point of order 7 .
(t) By Lemma 7 the only way for a curve to gain a point of order 3 or 5 over a sextic extension is for E to have a rational 3 - or 5-isogeny respectively. Therefore, if $G=(2),(6)$ or (10) and $H=(30), E$ must have rational 30 -isogeny which is impossible by Theorem 6 .

If $G=(1)$, then again E must have a rational 15 -isogeny and $j(E) \in\left\{-5^{2} / 2,-5^{2} \cdot 241^{3} / 2^{3},-5^{2} \cdot 29^{3} / 2^{5}, 5 \cdot\right.$ $\left.211^{3} / 2^{15}\right\}$ (see [31, Table 4]). Further, by [8, Lemma 4.8] we know that the kernel of the rational 15 -isogeny is defined over a field of degree dividing $\varphi(15)=8$. Therefore, if the kernel of the rational 15 -isogeny is defined over a sextic field, it must be in fact be defined over a quadratic field. But from [35, Theorem 2 (c)] there are no curves with $G=(1)$ and a point of order 15 over a quadratic field, so this is not possible. Thus the kernel of the rational 15 -isogeny cannot be defined over a sextic extension.

Looking at Table 4 we see that the only way to have a point of order 3 and a point of order 5 defined over a sextic field without having any rational points (since we are in the case where $G=(1)$) is for the point of
order 5 to be defined over a quadratic extension of \mathbb{Q} (i.e. $G_{E}(5)$ is conjugate to a subgroup of 5B.4.1) and the point of order 3 has to be defined over a cubic extension or a sextic extension of \mathbb{Q} (i.e. $G_{E}(3)$ is conjugate to 3 B.2.1 or 3 B respectively). We point out here that 3 B.2.1 is contained inside of $3 B$ and in fact the group generated by 3B.2.1 and $-I$ is equal 3B. Therefore the j-maps from these modular curves are the same and for each $\overline{\mathbb{Q}}$-isomorphism class corresponding to a point on the modular curve $X_{3 \mathrm{~B}}=X_{0}(3)$ there is a unique twist such that $G_{E}(3)$ is conjugate to 3B.2.1. Constructing the fiber product of these two genus 0 modular curves we get the elliptic curve E^{\prime} / \mathbb{Q} with Cremona label 15 a 3 and $E^{\prime}(\mathbb{Q})=(2,4)$. The rational points of E^{\prime} give 4 nonsingular noncuspidal points corresponding to the two j-invariants $5 \cdot 7 \cdot 11 \cdot 43 \cdot 421 / 2^{15}$ and $-5 \cdot 29^{3} / 2^{5}$. Using [41, Theorem 1.2], we see that each of these two curves has exactly 1 twist (up to \mathbb{Q}-isomorphism) with a point of order 3 defined over a cubic field. The \mathbb{Q}-isomorphism classes in question are represented by curves with Cremona label 50a4 and 450b3. Examining the division fields of these curves we see that the cubic fields where they gain a point of order 3 are disjoint from the 2 -division fields. Since these division fields are invariant under twisting, no twist of these curves can gain a point of order 30 over a sextic extension of \mathbb{Q}.

Before moving on, we point out the following: if E / \mathbb{Q} is either the elliptic curve with Cremona label 50a4 or $450 \mathrm{b3}$ and P_{15} is the point of order 15 defined over a sextic extension of \mathbb{Q}, then from [41, Theorems 1.3 and 1.5] twisting E by a square free integer d can only affect the degree of the field of definition of P_{15} in the following ways. If $d=-3$, then E^{d} has a rational point of order 3 and if $d=5$ then E^{d} has a rational point of order 5 and in both of these cases $G \neq(1)$. If d is any other square-free integers, the field of definition of the point of order 15 becomes $\mathbb{Q}\left(P_{15}, \sqrt{d}\right) / \mathbb{Q}$ which is a degree 12 extension. Therefore, these are the only two curves with $G=(1)$ and $H=(15)$ up to \mathbb{Q}-isomorphism.

For the case when E / \mathbb{Q} is an elliptic curve with complex multiplication give the following result:
Proposition 9. Let E / \mathbb{Q} be an elliptic curve with complex multiplication and K / \mathbb{Q} a sextic number field such that $E(\mathbb{Q})_{\text {tors }}=G$ and $E(K)_{\text {tors }}=H$.
(A) 11, 13, 17 and 19 do not divide the order of H.
(B) If $G=(1)$ or (2), then $H \neq(2,4)$.
(C) If $G=(2,2)$, then $(2,14) \nsubseteq H$.
(D) If $G=(1)$, then $H \neq(3,6)$.
(E) If $G=(3)$, then $H \neq(18)$.

Proof. (A) We know that $R_{\mathbb{Q}}(6)=\{2,3,5,7,13\}$, then we only need to proof the statement for 13 . By [41, §1.8] we have that $G_{E}(13)$ is $13 \mathrm{Ns}, 13 \mathrm{Nn}$ or $G^{3}(13)$. Therefore by Theorem $5.6[14$ we have an explicit characterization of the degree $\left[\mathbb{Q}\left(P_{13}\right): \mathbb{Q}\right]$ where P_{13} is a point of order 13. In particular the minimum degree of $\mathbb{Q}\left(P_{13}\right) / \mathbb{Q}$ is 24 .
(B) First suppose towards a contradiction that $G=(1)$ and $H=(2,4)$. From [17, 16] we know that this growth cannot happen over a quadratic or cubic extension of \mathbb{Q}. Next since $G=(1)$ we have that $[\mathbb{Q}(E[2]): \mathbb{Q}]=3$ or 6 and the only way that $[\mathbb{Q}(E[2]): \mathbb{Q}]=3$ is if the discriminant of E is a square. Looking at the tables of CM elliptic curves over \mathbb{Q} in [39, Appendix A, §3] we check that there is only one $\overline{\mathbb{Q}}$-isomorphism class of CM elliptic curves with an square discriminant, all of the form $y^{2}=x^{3}-r^{2} x$ with $r \in \mathbb{Q}$. All of these curves has full 2 -torsion over \mathbb{Q} and thus do not have $G=(1)$. So we may assume that $[\mathbb{Q}(E[2]): \mathbb{Q}]=6$ and thus $\mathbb{Q}(E[2])=K$ is a Galois extension of \mathbb{Q}. Now, from [8, Lemma 4.6] since K / \mathbb{Q} is Galois and $E(K)_{\text {tors }}=(2,4)$ we know that E must have a rational 2-isogeny which can only happen if E has a rational point of order 2 contradicting the assumption that $G=(1)$.

Next suppose towards a contradiction that $G=(2)$ and $H=(2,4)$. Again, from 17, 16 we know that this growth cannot happen over a quadratic or cubic extension of \mathbb{Q}. In this case $[\mathbb{Q}(E[2]): \mathbb{Q}]=2$ and so there must be a point of order 2 defined over a quadratic field that become divisible by 2 in a cubic extension, but this is impossible by [14, Proposition 4.6].
(C) Since $G=(2,2)$ we have that $E: y^{2}=x^{3}-r^{2} x$ for some $r \in \mathbb{Q}$ (see [41, Proposition 1.15]). In particular $j(E)=1728$ and [41, Proposition 1.14] shows that $G_{E}(7)$ is conjugate to 7 Nn . In this case, if P is a point of order 7 , we have $[\mathbb{Q}(P): \mathbb{Q}]=48>6$.
(D) Analogous to the proof of Proposition 8 (i) we need a point $P_{2} \in E[2]$ not defined over \mathbb{Q}, no rational points of order 3 and $[\mathbb{Q}(E[3]): \mathbb{Q}]$ divides 6. By Propositions 1.14, 1.15 and 1.16 from [41] and [14, Theorem 5.7] this is only possible if $\rho_{E, 2}$ is non-surjectiver and $G_{E}(3)$ is conjugate to 3 B .1 .2 . This gives the same contradiction
as Proposition 8(i).
(E) Note that in the proof of the similar statement but without complex multiplication (see Proposition 8(1)) we have not used the condition that the elliptic curve is without complex multiplication.

Theorem 10. Let E / \mathbb{Q} be an elliptic curve. If $E(K)_{\text {tors }}=(21)$ over some sextic number field K, then $j(E) \in$ $\left\{3^{3} \cdot 5^{3} / 2,-3^{2} \cdot 5^{3} \cdot 101^{3} / 2^{21},-3^{3} \cdot 5^{3} \cdot 382^{3} / 2^{7},-3^{2} \cdot 5^{6} / 2^{3}\right\}$.

Proof. By Lemma 7. If E has Cremona label 2450ba1 or 2450bd1 then $E(K)_{\text {tors }} \neq(21)$, otherwise if $E(K)_{\text {tors }}=$ (21) then E has a rational 3 - and a rational 7 -isogeny. Therefore a rational 21 -isogeny. That is $j(E) \in$ $\left\{3^{3} \cdot 5^{3} / 2,-3^{2} \cdot 5^{3} \cdot 101^{3} / 2^{21},-3^{3} \cdot 5^{3} \cdot 382^{3} / 2^{7},-3^{2} \cdot 5^{6} / 2^{3}\right\}$ by the classification of the rational points in $X_{0}(21)$ (see [31, Table 4]).

Theorem 11. Let E / \mathbb{Q} be an elliptic curve, K / \mathbb{Q} a sextic number field and $E(K)_{\text {tors }}=H$. Then
(i) If $H=(15)$, then E has Cremona label 50a3, 50a4, 50b1, 50b2, 450b4, or $450 b 3$.
(ii) If $H=(30)$, then E has Cremona label 50a3, 50b1, 50b2, or $450 b 4$.

Proof. From the proof of Proposition 8 (t), we know that the only elliptic curves with $G=(1)$ and $H=(15)$ or (30) are the elliptic curves with 50 a 4 and 450 b 3 and they both have $H=(15)$. Therefore, all that remains to classify are the elliptic curve with $G=(3)$ or $G=(5)$ and $H=(15)$ or $H=(30)$.

Starting with an elliptic curve with $G=(3)$, from Table 4 we get that the only way to gain a point of order 5 over a sextic field is to gain it over a quadratic extension of \mathbb{Q}. So first classify all elliptic curves with a point of order 3 over \mathbb{Q} and a rational 5 -isogeny defined over a quadratic extension. In order to have a rational point of order 3, it must be that $G_{E}(3)$ is conjugate to a subgroup of 3B.1.1 while having a point of order 5 defined over a quadratic extension requires $G_{E}(5)$ to be conjugate to a subgroup of 5B.4.1. Computing the fiber product of the two corresponding genus 0 modular curves we see that there curves are exactly two curves (up to \mathbb{Q}-isomorphism) that simultaneously have these properties and they are ones with Cremona label 450b4 and 50a3. Because these curves gain a point of order 15 over a quadratic extension and every elliptic curve with trivial 2 torsion gains a point of order 2 over a cubic extension, we know that for each of 450 b 4 and 50 a 3 there is a sextic extension of \mathbb{Q} where $H=(15)$ and a sextic extension of \mathbb{Q} where $H=(30)$.

Lastly, we classify the elliptic curves that have $G=(5)$ and a rational 3 -isogeny. This time to have a rational point of order $5 G_{E}(5)$ must be conjugate to 5B.1.1 while a rational 3-isogeny requires that $G_{E}(3)$ is conjugate to a subgroup of 3B. Computing the fiber product of these two genus 0 modular curves we see that there are exactly two elliptic curves (up to \mathbb{Q}-isomorphism) with both these properties simultaneously and they are the curves with Cremona label 50b1 and 50b2. Again for both 50b1 and 50b2 there is a quadratic extension of \mathbb{Q} where E gains a point of order 3 and so for each of these curves there is a sextic extension of \mathbb{Q} where $H=(15)$ and a sextic extension of \mathbb{Q} where $H=(30)$.

Remark 3. The following table shows the sextic fields (or subfields) where the torsion grows to (15) or (30):

G	E	(15)	(30)
(3)	50 a 3	$\mathbb{Q}(\sqrt{5})$	$\mathbb{Q}(\sqrt{5}, \alpha)$
(1)	$\overline{50 \mathrm{a} 4}$	$\mathbb{Q}(\sqrt[6]{5})$	-
(5)	50 b 1	$\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{-15}, \beta)$	$\mathbb{Q}(\sqrt{5}, \alpha)$
(5)	50 b 2	$\mathbb{Q}(\sqrt{-15}), \mathbb{Q}(\sqrt[6]{5})$	$\mathbb{Q}(\sqrt{-15}, \alpha)$
(3)	450 b 4	$\mathbb{Q}(\sqrt{-15})$	$\mathbb{Q}(\sqrt{-15}, \alpha)$
(1)	450 b 3	$\mathbb{Q}(\sqrt{-15}, \beta)$	-

where $\alpha^{3}-\alpha^{2}+2 \alpha+2=0$ and $\beta^{3}-\beta^{2}-3 \beta-3=0$.
Theorem 12. There are infinitely many non-isomorphic (over $\overline{\mathbb{Q}}$) elliptic curves E / \mathbb{Q} such that there is a sextic number field K with $E(K)_{\text {tors }}=(2,18)$ (resp. $(3,9),(3,12),(6,6)$).
Proof. Given $G \in \Phi(1)$ there exist a one-parameter family, called the Kubert-Tate normal form,

$$
\mathcal{T}_{t}^{G}: y^{2}+(1-c) x y-b y=x^{3}-b x^{2}, \quad \text { where } b, c \in \mathbb{Q}(t),
$$

such that G is a subgroup of $\mathcal{T}_{t}^{G}(\mathbb{Q}(t))_{\text {tors }}$ for all but finitely many values of $t \in \mathbb{Q}$ (cf. [29, Table 3]). For $G=(9)$ and $G=(12)$ we have

$$
\begin{array}{lll}
G=(9) & : \quad c=t^{2}(t-1) & , \quad b=c\left(t^{2}-t+1\right) \\
G=(12) & : & c=\left(3 t^{2}-3 t+1\right)\left(t-2 t^{2}\right) /(t-1)^{3}
\end{array} \quad, \quad b=c\left(2 t-2 t^{2}-1\right) /(t-1), \quad t \neq 0,1,1 / 2
$$

Thanks to the classification of $\Phi(1)$ we have that for those values of $t \in \mathbb{Q}$ we have $\mathcal{T}_{t}^{G}(\mathbb{Q})_{\text {tors }}=G$. Moreover, \mathcal{T}_{t}^{G} has not CM since $G \notin \Phi^{\mathrm{CM}}(1)$. Since $\mathcal{T}_{t}{ }^{G}$ has a rational point of order 3, Table 4 tell us that the image of the mod 3 Galois representation attached to \mathcal{T}_{t}^{G} is labeled 3Cs.1.1 or 3B.1.1. The former case can not happen since in that case $\left[\mathbb{Q}\left(\mathcal{T}_{t}^{G}[3]\right): \mathbb{Q}\right]=2$, but $(3,9),(3,12)$ are not subgroups of some group in $\Phi_{\mathbb{Q}}(2)$. For the case 3B.1.1 we have $\left[\mathbb{Q}\left(\mathcal{T}_{t}^{G}[3]: \mathbb{Q}\right]=6\right.$. Therefore $K=\mathbb{Q}\left(\mathcal{T}_{t}^{G}[3]\right)$ is a sextic field satisfying (3,9) if $G=(9)$ (resp. (3,12) if $G=(12)$) is a subgroup of $\mathcal{T}_{t}^{G}(K)$. But this happens for infinitely many values of t and since $(3,9)$ (resp. $(3,12))$ is a maximal subgroup in $\Phi^{\infty}(6)$ we have that, in fact, $\mathcal{T}_{t}^{G}(K)_{\text {tors }}=(3,9)($ resp $=(3,12))$.

Now, let be $G=(9)$ and $K=\mathbb{Q}\left(\mathcal{T}_{t}^{G}[2]\right)$. Then $(2,18)$ is a subgroup of $\mathcal{T}_{t}^{G}(K)$. We have that $[K: \mathbb{Q}]=6$, since otherwise $(2,18)$ is a subgroups of some group in $\Phi_{\mathbb{Q}}(d)$ for d dividing 6 . That is impossible. Analogous to the cases above, we have that in this case $\mathcal{T}_{t}^{G}(K)_{\text {tors }}=(2,18)$.

Finally the case $(6,6)$. Let be the one-parameter family $]^{3}$ given by:

$$
\mathcal{A}_{t}: y^{2}=x^{3}-3(a-1)^{3}(a-9) x-2(a-1)^{4}\left(a^{2}+18 a-27\right), \quad a=\left(t^{3}-1\right)^{2}, \quad t \neq 0,1 .
$$

This elliptic curve satisfies $\mathbb{Q}\left(\mathcal{A}_{t}[2]\right)=\mathbb{Q}\left(\mathcal{A}_{t}[3]\right)$. In particular, the field $K=\mathbb{Q}\left(\mathcal{A}_{t}[6]\right)$ is of degree 6 . Then $(6,6)$ is a subgroup of $\mathcal{A}_{t}(K)$. An analogous argument to above proves that $\mathcal{A}_{t}(K)_{\text {tors }}=(6,6)$.

Since the j-invariant of \mathcal{T}_{t}^{G} and \mathcal{A}_{t} is not constant, this proves that there are infinitely many non $\overline{\mathbb{Q}}$-isomorphic elliptic curve over \mathbb{Q} with torsion structures $H=(2,18),(3,9),(3,12)$ or $(6,6)$ over sextic fields.

4. Proof of Theorems 2 and 3

The results in section 3 are exactly the results necessary to proof the main theorems of the paper.
Proof of Theorem 园. For $d=2,3$ we have that $\Phi_{\mathbb{Q}}(d) \subseteq \Phi_{\mathbb{Q}}(6)$ and $\Phi_{\mathbb{Q}}(d) \subseteq \Phi^{\infty}(6)$. Therefore $\Phi_{\mathbb{Q}}(2) \cup \Phi_{\mathbb{Q}}(3) \subseteq$ $\Phi_{\mathbb{Q}}^{\star}(6)$. For $H \in\{(30),(2,18),(3,9),(3,12),(6,6)\}$ we have examples at Table 5 of an elliptic curve E / \mathbb{Q}, a sextic number field K such that $E(K)_{\text {tors }}=H$. Now, by definition, $\Phi_{\mathbb{Q}}^{\star}(6) \subseteq \Phi^{\infty}(6)$, so our task to complete the description of $\Phi_{\mathbb{Q}}^{\star}(6)$ is to prove that the following torsion structures do no appear for elliptic curve over \mathbb{Q} base change to any sextic number field:

$$
(11),(17),(19),(20),(22),(24),(26),(27),(28),(2,16),(2,20),(4,8) .
$$

Indeed,

- $H \neq(11),(17),(19),(22)$ by Proposition 8 (a) and by Proposition 9 (A).
- $H \neq(20)$ by Proposition 8 (k).
- $H \neq(24)$ by Proposition $8(\overline{\mathrm{~b}}),(\mathrm{d}),(\mathrm{g})$ and (p).
- $H \neq(26)$ by Proposition 8 (q) and by Proposition 9 (A).
- $H \neq(27)$ by Proposition 8 (r).
- $H \neq(28)$ by Proposition 8 (S).
- $H \neq(2,16),(4,8)$ by Proposition $8(\sqrt{b})$.
- $H \neq(2,20)$ by Proposition 8 (b), (e) and (c).

This concludes the first part of Theorem 2 , that is, the determination of $\Phi_{\mathbb{Q}}^{\star}(6)$. In particular we have obtained

$$
\begin{equation*}
\Phi_{\mathbb{Q}}^{\star}(6)=\Phi_{\mathbb{Q}}(2) \cup \Phi_{\mathbb{Q}}(3) \cup\{(30),(2,18),(3,9),(3,12),(6,6)\} . \tag{2}
\end{equation*}
$$

Now part (i) comes from Theorem 10 and (ii), (iii) from Theorem 11. It remains to determine $\Phi_{\mathbb{Q}}^{\infty}(6)$. Najman [35] has proved that $\Phi_{\mathbb{Q}}^{\infty}(2)=\Phi_{\mathbb{Q}}(2) \backslash\{(15)\}$ and $\left.\Phi_{\mathbb{Q}}^{\infty}(3)=\Phi_{\mathbb{Q}}(3) \backslash\{21)\right\}$. Then by 2 2and (i-iii) we only need to prove that there are infinitely many non $\overline{\mathbb{Q}}$-isomorphic classes of elliptic curves over \mathbb{Q} such that base change to sextic number field the tosion grows to one of the group in $\{(2,18),(3,9),(3,12),(6,6)\}$. This have been done in Theorem 12 ,

[^3]Proof of Theorem [3. The groups $H \in \Phi_{\mathbb{Q}}^{\star}(6)$ that do not appear in some $\Phi_{\mathbb{Q}}^{\star}(6, G)$ for any $G \in \Phi(1)$, with $G \subseteq H$, can be ruled out using Propositions 8 and 9 . In Table 3 below, for each group G at the top of a column, we indicate what groups H (in each row) may appear, and indicate

- with (a) (t), which part of Proposition 8 is used to prove that the pair (G, H) cannot appear in the non-CM case,
- with $(\mathrm{A})-(\mathrm{E})$, which part of Proposition 9 is used to prove that the pair (G, H) cannot appear in the CM case,
- with - , if the case is ruled out because $G \nsubseteq H$,
- with a \checkmark, if the case is possible and, in fact, it occurs. There are a few types of check marks in Table 3;
$-\checkmark$ (without a subindex) mean $\left\{^{4}\right.$ that $G=H$. .
$-\checkmark_{d}$ for $d=2$ or 3 means that the structure H occurs already over a quadrati \int^{5} or cubi 6^{6} field respectively. $\checkmark_{2,3}$ means that both cases appear (not necessarily for a single elliptic curve).
- $\sqrt{6}$ means that H can be achieved over a sextic field but not over an intermediate quadratic or cubic field, and we have collected examples of curves and sextic fields in Table 5.

5. Sporadic torsion over sextic fields

Let d a positive integer and H a finite abelian group. We say that H is a sporadic torsion over degree d if there are a number field K of degree d and an elliptic curve E / K such that $H=E(K)_{\text {tors }}$ satisfying $H \notin \Phi^{\infty}(d)$. Notice that these elliptic curves are in bijection to its j-invariants in $J(d)$. Up to our knowledge only a few examples are known, excluding the Najman's elliptic curve cited at the introduction with $H=(21)$ for the case $d=3$. These examples have been found by van Hoeij [19]:

- $d=5: H=(28),(30)$,
- $d=6: H=(25),(37)$.

Notice that all the cases correspond to cyclic groups. In this paper we have dealt with the problem to characterize $\Phi_{\mathbb{Q}}^{\star}(6)=\Phi_{\mathbb{Q}}(6) \cap \Phi^{\infty}(6)$. But it is easy to check that (25) and (37) are not subgroups of any group in $\Phi_{\mathbb{Q}}(6)$. The former case because by Table 4 in order to gain a point P_{5} of order 5 in a sextic field we have $\left[\mathbb{Q}\left(P_{5}\right): \mathbb{Q}\right]=1,2$. Now if P_{25} is a point of order 25 such that $5 P_{25}=P_{5}$ then by [14, Proposition 4.6] we have $\left[\mathbb{Q}\left(P_{25}\right): \mathbb{Q}\left(P_{5}\right)\right]$ divides 25 or 20 . Looking at $\Phi_{\mathbb{Q}}(d)$ for $d=2$ and 3 we show that it is not possible the case (25). The last case is because $37 \notin R_{\mathbb{Q}}(6)$.

On the other hand it has been pointed out that $(4,12) \in \Phi_{\mathbb{Q}}(6)$. In particular this shows the first example of an sporadic non cyclic torsion subgroup (over degree 6). See Remark 1 for more information about this sporadic torsion.

6. Computations

Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a number field. We say that there is torsion growth from \mathbb{Q} to K if $E(\mathbb{Q})_{\text {tors }} \subsetneq E(K)_{\text {tors }}$. Note that if there is torsion growth over K / \mathbb{Q} then the torsion also grows in every extension of K. We say that the torsion growth in K is primitive if $E\left(K^{\prime}\right)_{\text {tors }} \subsetneq E(K)_{\text {tors }}$ for any subfield $K^{\prime} \subsetneq K$. With this definition in mind it is possible to give a more detailed description of how the torsion grows. Given an elliptic curve E / \mathbb{Q} and a positive integer d, we denote by $\mathcal{H}_{\mathbb{Q}}(d, E)$ the set of pairs (H, K) (up to isomorphisms) where K / \mathbb{Q} is of degree dividing $d, H=E(K)_{\text {tors }} \neq E(\mathbb{Q})_{\text {tors }}$ and the torsion growth in K is primitive. Note that we are allowing the possibility of two (or more) of the torsion subgroups H being isomorphic if the corresponding number fields K are not isomorphic. We call the set $\mathcal{H}_{\mathbb{Q}}(d, E)$ the torsion configurations of the elliptic curve E / \mathbb{Q}.
When E / \mathbb{Q} runs over all elliptic curve we denote by $\mathcal{H}_{\mathbb{Q}}(d)$ the set of sets $\mathcal{H}_{\mathbb{Q}}(d, E)$. Finally, for any $G \in \Phi(1)$ we define $\mathcal{H}_{\mathbb{Q}}(d, G)$ as the set of sets $\mathcal{H}_{\mathbb{Q}}(d, E)$ where E / \mathbb{Q} runs over all the elliptic curve such that $E(\mathbb{Q})_{\text {tors }}=G$. Note that if we denote by $h_{\mathbb{Q}}(d)$ the maximum of the cardinality of the sets S when $S \in \mathcal{H}_{\mathbb{Q}}(d)$, then $h_{\mathbb{Q}}(d)$ gives

[^4]| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (12) | $(2,2)$ | $(2,4)$ | $(2,6)$ | $(2,8)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | \checkmark | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| (2) | $\sqrt{3}$ | \checkmark | - | - | - | - | - | - | - | - | - | - | - | - | - |
| (3) | $\sqrt{2,3}$ | - | \checkmark | - | - | - | - | - | - | - | - | - | - | - | - |
| (4) | $\sqrt{3}$ | $\sqrt{2}$ | - | \checkmark | - | - | - | - | - | - | - | - | - | - | - |
| (5) | $\sqrt{2}$ | - | - | - | \checkmark | - | - | - | - | - | - | - | - | - | - |
| (6) | $\sqrt{3}$ | $\sqrt{2,3}$ | $\sqrt{3}$ | - | - | \checkmark | - | - | - | - | - | - | - | - | - |
| (7) | $\sqrt{2,3}$ | - | - | - | - | - | \checkmark | - | - | - | - | - | - | - | - |
| (8) | (b) | $\sqrt{2}$ | - | $\sqrt{2}$ | - | - | - | \checkmark | - | - | - | - | - | - | - |
| (9) | $\sqrt{2}$ | - | $\sqrt{3}$ | - | - | - | - | - | \checkmark | - | - | - | - | - | - |
| (10) | $\sqrt{6}$ | $\sqrt{2}$ | - | - | $\sqrt{3}$ | - | - | - | - | \checkmark | - | - | - | - | - |
| (11) | (a) | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| (12) | $\sqrt{6}$ | $\sqrt{2}$ | $\sqrt{3}$ | $\sqrt{2,3}$ | - | $\sqrt{2}$ | - | - | - | - | \checkmark | - | - | - | - |
| (13) | $\sqrt{3}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| (14) | $\sqrt{6}$ | $\sqrt{3}$ | - | - | - | - | $\sqrt{3}$ | - | - | - | - | - | - | - | - |
| (15) | $\sqrt{6}$ | - | $\sqrt{2}$ | - | $\sqrt{2}$ | - | - | - | - | - | - | - | - | - | - |
| (16) | (b) | $\sqrt{2}$ | - | (b) | - | - | - | $\sqrt{2}$ | - | - | - | - | - | - | - |
| (17) | (a) | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| (18) | $\sqrt{6}$ | $\sqrt{6}$ | (1), E) | - | - | $\sqrt{3}$ | - | - | $\sqrt{3}$ | - | - | - | - | - | - |
| (19) | (a) A | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| (20) | (k) | (k) | - | (k) | (k) | - | - | - | - | (k) | - | - | - | - | - |
| (21) | $\sqrt{6}$ | - | $\sqrt{3}$ | - | - | - | (0) | - | - | - | - | - | - | - | - |
| (22) | (a) | (a) | - | - | - | - | - | - | - | - | 二 | - | - | - | - |
| (24) | (b) | (p) | (b) | (p) | - | (p) | - | (d) | - | - | (g) | - | - | - | - |
| (26) | (q), A | (q), A) | 二 | - | - | - | - | - | - | - | - | - | - | - | - |
| (27) | (r) | - | (r) | - | - | - | - | - | (r) | - | - | - | - | - | - |
| (28) | (S) | (s) | - | (s) | - | - | (s) | - | - | - | - | - | - | - | - |
| (30) | (t) | (t) | $\sqrt{6}$ | - | $\sqrt{6}$ | (t) | - | - | - | (t) | - | - | - | - | - |
| $(2,2)$ | $\sqrt{3}$ | $\sqrt{2}$ | - | - | - | - | - | - | - | - | - | \checkmark | - | - | - |
| $(2,4)$ | (b), B | (b), (B) | - | $\sqrt{2}$ | - | - | - | - | - | - | - | $\sqrt{2}$ | \checkmark | - | - |
| $(2,6)$ | $\sqrt{6}$ | $\sqrt{2}$ | $\sqrt{3}$ | - | - | $\sqrt{2}$ | - | - | - | - | - | $\sqrt{2,3}$ | - | \checkmark | - |
| $(2,8)$ | (b) | b) | - | $\sqrt{2}$ | - | - | - | $\sqrt{2}$ | - | - | - | $\sqrt{2}$ | $\sqrt{2}$ | - | \checkmark |
| $(2,10)$ | $\sqrt{6}$ | $\sqrt{2}$ | - | - | $\sqrt{6}$ | - | - | - | - | $\sqrt{2}$ | - | (e) | - | - | - |
| $(2,12)$ | (b) | (b) | (b) | $\sqrt{2}$ | - | (b) | - | - | - | - | $\sqrt{2}$ | $\sqrt{2}$ | (f) | $\sqrt{2}$ | - |
| $(2,14)$ | $\sqrt{3}$ | $\sqrt{6}$ | - | - | - | - | $\sqrt{6}$ | - | - | - | - | (h), C) | - | - | - |
| $(2,16)$ | (b) | (b) | - | (b) | - | - | - | (b) | - | - | - | b | (b) | - | (b) |
| $(2,18)$ | $\sqrt{6}$ | $\sqrt{6}$ | (n) | L | - | $\sqrt{6}$ | - | | $\sqrt{6}$ | - | - | (m) | - | m | - |
| $(2,20)$ | (b) | b) | \square | (c) | b) | - | - | - | - | (b) | - | (e) | (c) | - | - |
| $(3,3)$ | $\sqrt{6}$ | - | $\sqrt{2}$ | - | - | - | - | - | - | - | - | - | - | - | - |
| $(3,6)$ | (i), D) | $\sqrt{6}$ | $\sqrt{6}$ | - | - | $\sqrt{2}$ | - | - | - | - | - | - | - | - | - |
| $(3,9)$ | $\sqrt{6}$ | - | $\sqrt{6}$ | - | - | - | - | - | $\sqrt{6}$ | - | - | - | - | - | - |
| $(3,12)$ | (i) | $\sqrt{6}$ | (j) | $\sqrt{6}$ | - | $\sqrt{6}$ | - | - | - | - | $\sqrt{6}$ | - | - | - | - |
| $(4,4)$ | $\sqrt{6}$ | (b) | - | $\sqrt{2}$ | - | - | - | - | - | - | - | (b) | $\sqrt{2}$ | - | - |
| $(4,8)$ | (b) | (b) | - | (b) | - | - | - | (b) | - | - | - | (b) | (b) | - | (b) |
| $(6,6)$ | $\sqrt{6}$ | $\sqrt{6}$ | $\sqrt{6}$ | - | - | $\sqrt{6}$ | - | - | - | - | - | $\sqrt{6}$ | - | $\sqrt{6}$ | - |

Table 3: The table displays either if the case happens for $G=H(\checkmark)$, if it already occurs over a quadratic field $(\sqrt{2})$ or over a cubic field $(\sqrt{3})$, if it occurs over a sextic but not a quadratic or cubic $(\sqrt{6})$, if it is impossible because $G \nsubseteq H(-)$ or if it is ruled out by Proposition 8 (a) - t$)$) and Proposition 9 ($(\sqrt{\mathrm{A}})-(\mathrm{E})$
the maximum of how many primitive degree d extensions can appear.
The above sets $\mathcal{H}_{\mathbb{Q}}(d)$ and $\mathcal{H}_{\mathbb{Q}}(d, G)$, for any $G \in \Phi(1)$, have been completely determined for $d=2$ in [18], for $d=3$ in [16], for $d=5$ in [11], for $d=7$ and for any d not divisible by a primes less than 11 in [14]. For the case $d=4$, in order to guess what $\mathcal{H}_{\mathbb{Q}}(4)$ may look like it has been carried out an exhaustive computation [13] in Magma for all elliptic curves over \mathbb{Q} with conductor less than 350.000. Actually ${ }^{7}$ this computations has been enlarged up to conductor 400.000 .

In the same vein as the quartic computations we have carried out similar computations in the sextic case. Table 6 gives all 8 the torsion configurations over sextic fields that we have found, 137 in total. Similarly to the quartic case in [13, we have not tried to determine that those are all the possible cases. But note that the largest conductor where we needed to complete the table was 10.816, far from 400.000.

The following table shows what is know about $h_{\mathbb{Q}}(d)$:

d	2	3	4	5	6	7	$2,3,5,7 \nmid d$
$h_{\mathbb{Q}}(d)$	4	3	≥ 9	1	≥ 9	1	0

[^5]For each possible subgroup $G_{E}(p) \subseteq \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ for $p \in R_{\mathbb{Q}}(6)=\{2,3,5,7,13\}$, Table 4 lists in the first and second column the corresponding labels in Sutherland and Zywina notations, and the following data:
d_{0} : the index of the largest subgroup of $G_{E}(p)$ that fixes a $\mathbb{Z} / p \mathbb{Z}$-submodule of rank 1 of $E[p]$; equivalently, the degree of the minimal extension L / \mathbb{Q} over which E admits a p-isogeny defined over L.
d_{v} : is the index of the stabilizers of $v \in(\mathbb{Z} / p \mathbb{Z})^{2}, v \neq(0,0)$, by the action of $G_{E}(p)$ on $(\mathbb{Z} / p \mathbb{Z})^{2}$; equivalently, the degrees of the extension L / \mathbb{Q} over which E has a L-rational point of order p.
d : is the order of $G_{E}(p)$; equivalently, the degree of the minimal extension L / \mathbb{Q} for which $E[p] \subseteq E(L)$.
Note that Table 4 is partially extracted from Table 3 of [40]. The difference is that [40, Table 3] only lists the minimum of d_{v}, which is denoted by d_{1} therein.

Sutherland	Zywina	d_{0}	d_{v}	d	Sutherland	Zywina	d_{0}	d_{v}	d
2Cs	G_{1}	1	1	1	7Ns. 2.1	$H_{1,1}$	2	6, 9, 18	18
2B	G_{2}	1	1,2	2	7Ns.3.1	G_{1}	2	12,18	36
2 Cn	G_{3}	3	3	3	7B.1.1	$H_{3,1}$	1	1, 42	42
$\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$		3	3	6	7B.1.3	$H_{4,1}$	1	6, 7	42
					7B.1.2	$H_{5,2}$	1	3, 42	42
3Cs.1.1	$H_{1,1}$	1	1,2	2	7B.1.5	$H_{5,1}$	1	6, 21	42
3Cs	G_{1}	1	2,4	4	7B.1.6	$H_{3,2}$	1	2, 21	42
3B.1.1	$H_{3,1}$	1	1,6	6	7B.1.4	$H_{4,2}$	1	3, 14	42
3B.1.2	$H_{3,2}$	1	2,3	6	7Ns	G_{2}	2	12, 36	72
3Ns	G_{2}	2	4	8	7B.6.1	G_{3}	1	2, 42	84
3B	G_{3}	1	2,6	12	7B.6.3	G_{4}	1	6, 14	84
3 Nn	G_{4}	4	8	16	7B.6.2	G_{5}	1	6, 42	84
$\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$		4	8	48	7 Nn	G_{6}	8	48	96
5Cs. 1.1	$H_{1,1}$	1	1,4	4	7B.2.1	$H_{7,2}$	1	3, 42	126
5Cs.1.3	$H_{1,2}$	1	2,4	4	7B. 2.3	$H_{7,1}$	1	6, 21	126
5Cs.4.1	G_{1}	1	2,4,8	8	7B	G_{7}	1	6, 42	252
5Ns. 2.1	G_{3}	2	8,16	16	$\mathrm{GL}_{2}(\mathbb{Z} / 7 \mathbb{Z})$		8	48	2016
5 Cs	G_{2}	1	4	16	13S4	G_{7}	6	72, 96	288
5B.1.1	$H_{6,1}$	1	1,20	20	13B.3.1	$H_{5,1}$	1	3, 156	468
5B.1.2	$H_{5,1}$	1	4,5	20	13B.3.2	$H_{4,1}$	1	12, 39	468
5B.1.4	$H_{6,2}$	1	2,20	20	13B. 3.4	$H_{5,2}$	1	6, 156	468
5B.1.3	$H_{5,2}$	1	4,10	20	13B. 3.7	$H_{4,2}$	1	12,78	468
5 Ns	G_{4}	2	8,16	32	13B.5.1	G_{2}	1	4, 156	624
5B.4.1	G_{6}	1	2,20	40	13B.5.2	G_{1}	1	12,52	624
5B.4.2	G_{5}	1	4, 10	40	13B.5.4	G_{3}	1	12, 156	624
5 Nn	G_{7}	6	24	48	13B.4.1	G_{5}	1	6, 156	936
5B	G_{8}	1	4, 20	80	13B.4.2	G_{4}	1	12,78	936
5S4	G_{9}	6	24	96	13B	G_{6}	1	12, 156	1872
$\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$		6	24	480	$\mathrm{GL}_{2}(\mathbb{Z} / 13 \mathbb{Z})$		14	168	26208

TABLE 4. Image groups $G_{E}(p)=\rho_{E, p}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$, for $p \leq 13$, for non-CM elliptic curves E / \mathbb{Q}.

References

[1] J. S. Balakrishnan, N. Dogra, J. S. Müller, J. Tuitman, and J. Vonk. Explicit Chabauty-Kim for the Split Cartan Modular Curve of Level 13 , arXiv:1711.05846 4
[2] B.J. Birch, and W. Kuyk (eds.), Modular Functions of One Variable IV. Lecture Notes in Mathematics 476. Springer (1975).
[3] W. Bosma, J. Cannon, C. Fieker, and A. Steel (eds.). Handbook of Magma functions, Edition 2.23. http://magma.maths.usyd. edu.au/magma 2018. 3
[4] M. Chou, Torsion of rational elliptic curves over quartic Galois number fields. J. Number Theory 160 (2016), 603-628. 2
[5] P. L. Clark, P. Corn, A. Ric, and J. Stankewicz. Computation on elliptic curves with complex multiplication, LMS J. Comput. Math. 17 (2014), 509-535. 5
[6] J.E. Cremona, Elliptic curve data for conductors up to 400.000. Available on http://www.warwick.ac.uk/~masgaj/ftp/data, 2016.
[7] H. Daniels, and E. González-Jiménez, Magma scripts related to On the torsion of rational elliptic curves over sextic fields, available at http://matematicas.uam.es/~enrique.gonzalez.jimenez/ 3, 6
[8] H.B. Daniels, Á. Lozano-Robledo, F. Najman, and A.V. Sutherland, Torsion subgroups of rational elliptic curves over the compositum of all cubic fields, Math. Comp. 87 (2018), pp. 425-458. 3. 8, 9, 10
[9] M. Derickx and A. V. Sutherland, Torsion subgroups of elliptic curves over quintic and sextic number fields. Proc. Amer. Math. Soc. 145 (2017), no. 10, 4233-4245. 1
[10] G. Fung, H. Ströher, H. Williams, and H. Zimmer. Torsion groups of elliptic curves with integral j-invariant over pure cubic fields. J. Number Theory 36 (1990) 12-45. 5
[11] E. González-Jiménez, Complete classification of the torsion structures of rational elliptic curves over quintic number fields, J. Algebra 478 (2017), 484-505. 2, 15
[12] E. González-Jiménez, and Á. Lozano-Robledo, On the minimal degree of definition of p-primary torsion subgroups of elliptic curves, Math. Res. Lett. 24 (2017), 1067-1096. 6
[13] E. González-Jiménez, and Á. Lozano-Robledo, On the torsion of rational elliptic curves over quartic fields, Math. Comp. 87 (2018), 1457-1478. 2, 6, 15
[14] E. González-Jiménez, and F. Najman, Growth of torsion groups of elliptic curves upon base change, preprint, arXiv:1609.02515. 22, 6, 7, 10, 13,15
[15] E. González-Jiménez, and F. Najman, An algorithm for determining torsion growth of elliptic curves, in preparation. 3. 15
[16] E. González-Jiménez, F. Najman, and J.M. Tornero, Torsion of rational elliptic curves over cubic fields. Rocky Mountain J. Math. 46 (2016), no. 6, 1899-1917. 2, 6, 7, 8, 10, 13,15
[17] E. González-Jiménez, and J.M. Tornero, Torsion of rational elliptic curves over quadratic fields. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), 923-934. $2.6 .7 \mid 8.9 .10 .13$
[18] E. González-Jiménez, and J.M. Tornero, Torsion of rational elliptic curves over quadratic fields II. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), 121-143. 15
[19] M. van Hoeij, Low Degree Places on the Modular Curve $X_{1}(N)$, arXiv:1202.4355. (data file available at https://www.math. fsu.edu/~hoeij/files/X1N/LowDegreePlaces). 1, 13
[20] D. Jeon, C.H. Kim, and Y. Lee, Infinite families of elliptic curves over dihedral quartic number fields. J. Number Theory 133 (2013), 115-122.
[21] D. Jeon, C.H. Kim, and A. Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), 291-301. 6
[22] D. Jeon, C.H. Kim, and E. Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), 1-12. 1
[23] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109 (1992), 221-229.
[24] M. A. Kenku, The modular curve $X_{0}(39)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 85 (1979), 21-23. 1
[25] M. A. Kenku, The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 87 (1980), 15-20. 1
[26] M. A. Kenku, The modular curve $X_{0}(169)$ and rational isogeny, J. London Math. Soc. (2) 22 (1980), 239-244. 4
[27] M. A. Kenku, The modular curve $X_{0}(125), X_{1}(25)$ and $X_{1}(49)$, J. London Math. Soc. (2) 23 (1981), 415-427. 4
[28] M.A. Kenku, and F. Momose, Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125-149. 4 4
[29] D.S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. 33 (1976), 193-237. 1 12
[30] LMFDB Collaboration, The L-functions and modular forms database, available at http://www.lmfdb.org 3. 9,15
[31] A. Lozano-Robledo. On the field of definition of p-torsion points on elliptic curves over the rationals. Math. Ann. 357 (2013), 279-305. 9, 11
[32] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44 (1978), 129-162.
[33] L. Merel. Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437-449.
[34] H. Müller, H. Ströher, and H. Zimmer. Torsion groups of elliptic curves with integral j-invariant over quadratic fields. J. Reine Angew. Math. 397 (1989), 100-161. 1, 4
1
[35] F. Najman, Torsion of elliptic curves over cubic fields and sporadic points on $X_{1}(n)$. Math. Res. Lett., 23 (2016), 245-272. 5 1.2, 9,12
[36] L. Olson. Points of finite order on elliptic curves with complex multiplication. Manuscripta Math. 14 (1974), 195-205. 5
[37] A. Petho, T. Weis, and H. Zimmer. Torsion groups of elliptic curves with integral j-invariant over general cubic number fields. Int. J. Algebra Comput. 7 (1997), 353-413. 5
[38] J. Rouse, D. Zureick-Brown, Elliptic curves over \mathbb{Q} and 2-adic images of Galois, Research in Number Theory 1 (2015), 34 pages. (data files and subgroup descriptions available at http://users.wfu.edu/rouseja/2adic/) 5, 6, 7, 9
[39] J. Silverman, Advanced topics in the arithmetic of elliptic curves Graduate Texts in Mathematics, 151. Springer-Verlag, New York, 1994. xiv +525 pp. 10
[40] A.V. Sutherland, Computing images of Galois representations attached to elliptic curves. Forum Math. Sigma 4 (2016), e4, 79 pp. 316
[41] D. Zywina, On the possible images of the mod ℓ representations associated to elliptic curves over $\mathbb{Q} . \operatorname{arXiv}: 1508.07660,4$. 9 . 10

TABLE 5. Examples of elliptic curves such that $G \in \Phi(1)$ and $H \in \Phi_{\mathbb{Q}}(6, G)$ but $H \notin \Phi_{\mathbb{Q}}(d, G), d=2,3$

Department of mathematics and statistics, Amherst College, MA 01002, USA
E-mail address: hdaniels@amherst.edu
Universidad Autónoma de Madrid, Departamento de Matemáticas, Madrid, Spain
E-mail address: enrique.gonzalez.jimenez@uam.es

Table 6. Torsion configurations over sextic fields

G	$\mathcal{H}_{\mathbb{Q}}(6, E)$	Label
(1)	$(2,2)$	392b1
	$(2,14)$	1922c1
	(2), $(2,2)$	11 a 2
	$(2,2),(2,14)$	1922 e 1
	(4), $(4,4)$	648a1
	(7), (2, 2)	1922c2
	(2), (5), (2, 10)	121 d 1
	(2), (7), (2, 2)	26b2
	(2), (7), (2, 14)	10816 bk 1
	(2), (13), (2, 2)	147c1
	(3), (6), $(6,6)$	108a2
	(4), (7), (4, 4)	338 b 1
	(2), $(3)^{2},(2,6)$	484a1
	(2), (3), (9), (2, 18)	1728 e 3
	(2), (4) ${ }^{2},(2,2)$	648c1
	(2), (5), (10), (2, 2)	75 a 2
	(2), (7), (14), (2, 2)	208d1
	$(3)^{2},(2,2),(2,6)$	196a1
	$(3)^{2},(4),(4,12)$	1296h1
	(2), (3) ${ }^{2},(2,6),(3,3)$	225b2
	(2), (3) ${ }^{2},(6),(2,2)$	50b3
	(2), (3) ${ }^{2},(6),(2,6)$	361 b 2
	(2), (3) ${ }^{2},(7),(2,6)$	5184bd1
	(2), (3) ${ }^{2},(9),(2,6)$	361b1
	(2), $(3)^{2},(21),(2,6)$	5184u1
	(2), (3), (6) ${ }^{2},(2,2)$	300a1
	(2), (3), (9), (18), (2, 2)	432 e 3
	(2), (4) ${ }^{2},(7),(2,2)$	338a1
	$(3)^{2},(2,2),(2,6),(3,3)$	196b2
	$(3)^{2},(4),(12),(4,4)$	1296h2
	$(2),(3)^{2},(4)^{2},(2,6)$	1296j1
	(2), (3) ${ }^{2},(4),(12),(2,2)$	1296j2
	(2), (3) ${ }^{2},(5),(6),(2,10)$	1600q1
	(2), (3) ${ }^{2},(5),(10),(2,6)$	1600 v 3
	$(2),(3)^{2},(6),(2,2),(3,3)$	44 a 2
	$(2),(3)^{2},(6),(2,2),(3,9)$	486 c 2
	(2), (3) ${ }^{2},(6)^{2},(2,2)$	175b2
	(2), (3) ${ }^{2},(6),(7),(2,2)$	1296 e 2
	(2), (3) ${ }^{2},(6),(9),(2,2)$	175b1
	(2), (3) ${ }^{2},(6),(9),(2,6)$	1728 e 2
	(2), (3) ${ }^{2},(6),(21),(2,2)$	1296 e 1
	(2), (3), (9), (18), (2, 2), (3, 9)	54a2
	$(3)^{2},(4),(12),(3,3),(4,4)$	162d2
	(2), (3) ${ }^{2},(4)^{2},(6),(2,2)$	4050g2
	$(2),(3)^{2},(4),(12),(2,2),(3,3)$	162a2
	$(2),(3)^{2},(5),(6),(10),(2,2)$	400b1
	(2), $(3)^{2},(6)^{2},(9),(2,2)$	432a1
	$(2),(3)^{2},(6),(7),(2,2),(3,3)$	162b4
	$(2),(3)^{2},(6),(7),(21),(2,2)$	7938u3
	$(2),(3)^{2},(6),(21),(2,2),(3,3)$	162c2
	(2), (3) ${ }^{2},(9)^{2},(2,6),(3,3)$	27 a 2
	$(2),(3)^{2},(6),(7),(21),(2,2),(3,3)$	162 b 2
	$(2),(3)^{2},(6),(9)^{2},(2,2),(3,3)$	19a2
	$(2),(3)^{2},(5),(6),(10),(15),(2,2),(3,3)$	50a4

G	$\mathcal{H}_{\mathbb{Q}}(6, E)$	Label
(2)	$(2,2)$	46a1
	$(2,10)$	450a3
	$(2,2),(2,14)$	49a1
	(6), $(2,6)$	80b1
	(10), (2, 2)	150b3
	$(14),(2,2)$	49a2
	$(4)^{2},(2,2)$	15a5
	(4), (8), (2, 2)	24 a 6
	(4), (16), (2, 2)	3150 bk 1
	(6), (2, 2), $(2,6)$	80b3
	$(6),(2,6),(2,18)$	98 a 1
	(6), (2, 6), (6, 6)	36a3
	$(6)^{2},(2,2)$	80b2
	$(8)^{2},(2,2)$	2880 bd 6
	$(14),(2,2),(2,14)$	49a3
	$(4)^{2},(6),(2,6)$	960○7
	$(4)^{2},(12),(2,6)$	450 g 1
	(4), (6), (12), (2, 2)	240b3
	(4), (12), (2, 2), (2, 6)	450 g 3
	$(6)^{2},(18),(2,2)$	98 a 2
	(6), (18), (2, 2), (2, 6)	98a5
	$(4)^{2},(6),(2,2),(2,6)$	96004
	$(4)^{2},(6)^{2},(2,2)$	150c4
	$(4)^{2},(6),(12),(2,2)$	240b1
	$(6)^{2},(2,2),(2,6),(3,6)$	20a3
	$(4),(6),(12)^{2},(2,2),(2,6),(3,12)$	30a3
	$(6)^{2},(18)^{2},(2,2),(2,6),(3,6)$	14 a 3
	$(4)^{2},(6)^{2},(12)^{2},(2,2),(2,6),(3,6)$	30a7
(3)	$(2,6),(3,3)$	196b1
	(6), $(6,6)$	108a1
	(6), (2, 6), (3, 3)	44 a 1
	(12), (3, 3), (4, 12)	162d1
	$(6),(2,6),(3,3),(3,6)$	19a1
	(6), (3, 3), (3, 9), (6, 6)	27a1
	(6), (9), (2, 6), (3, 9)	486f1
	(6), (21), (2, 6), (3, 3)	162b1
	(6), $(2,6),(3,3),(3,6),(3,9)$	54 a 1
	(6), (9), (3, 3), (3, 9), (6, 6)	27 a 3
	(6), $(9)^{2},(2,6),(3,3)$	19a3
	(6), (12) ${ }^{2},(2,6),(3,3)$	162a1
	(6), (15), (30), (2, 6), (3, 3)	50a3
	$(6),(9),(2,6),(3,3),(3,6),(3,9)$	54b1

G	$\mathcal{H}_{\mathbb{Q}}(6, E)$	Label
(4)	$(2,4)$	17a1
	$(2,8)$	192c6
	$(4,4)$	40a4
	(12), $(2,12)$	$150 \mathrm{c3}$
	$(8)^{2},(2,4)$	15 a
	$(8)^{2},(2,8)$	240d6
	$(12),(2,4),(2,12)$	150c1
	$(12)^{2},(2,4)$	720 j 5
	$(12)^{2},(2,4),(2,12),(3,12)$	90c1
(5)	(10), $(2,10)$	11a1
	(10), (15) ${ }^{2},(30),(2,10)$	50b1
(6)	$(2,6),(3,6)$	14a1
	$(2,6),(6,6)$	36a1
	$(12)^{2},(2,6),(3,6)$	30a4
	$(12)^{2},(2,6),(3,12)$	30a1
	$(18)^{2},(2,6),(2,18),(3,6)$	14a4
(7)	$(14),(2,14)$	26b1
(8)	$(2,8)$	15a4
	$(16)^{2},(2,8)$	210 e 1
(9)	$(18),(2,18),(3,9)$	54b3
(10)	$(2,10)$	66c1
(12)	$(2,12),(3,12)$	90c3
$(2,2)$	$(2,4)$	33a1
	$(2,8)$	63a2
	$(2,4)^{2}$	17 a 2
	$(2,4),(2,8)$	75 b 3
	$(2,6)^{2}$	240b2
	$(2,6),(2,12)$	96006
	$(2,4)^{3}$	15a2
	$(2,4)^{2},(2,8)$	510e5
	$(2,4),(2,6)^{2}$	150c2
	$(2,4),(2,6),(2,12)$	96002
	$(2,6)^{2},(6,6)$	$30 \mathrm{a6}$
	$(2,4),(2,6)^{2},(2,12),(6,6)$	90c2
$(2,4)$	$(2,8)$	15 a 3
	$(4,4)$	195a3
	$(2,8)^{2}$	1230f2
	$(2,8),(4,4)$	15a1
	$(2,8)^{2},(4,4)$	210 e 3
$(2,6)$	$(6,6)$	30 a 2
	$(2,12),(6,6)$	90c6

[^0]: Date: August 8, 2018.
 2010 Mathematics Subject Classification. Primary: 11G05; Secondary: 14H52,14G05,11R16.
 Key words and phrases. Elliptic curves, torsion subgroup, rationals, sextic fields.
 The first author was partially supported by the grant MTM2015-68524-P..

[^1]: ${ }^{1}$ Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a number field of degree d whose prime divisors are greater than 7 , then $E(K)_{\text {tors }}=$ $E(\mathbb{Q})_{\text {tors }}$ (see Remark 7.5 [14]).

[^2]: ${ }^{2}$ The p-adic Galois representations associated to an elliptic curve are constructed by taking the inverse image of the mod p^{n} Galois representations.

[^3]: ${ }^{3}$ This family was computed by the first author and Álvaro Lozano-Robledo while working on the question of when can $\mathbb{Q}(E[n])=$ $\mathbb{Q}(E[m])$. The family \mathcal{A}_{t} is the 1-parameter family of elliptic curves with the property that $\mathbb{Q}\left(\mathcal{A}_{t}[2]\right)=\mathbb{Q}\left(\mathcal{A}_{t}[3]\right)$ and both are sextic extensions of \mathbb{Q}.

[^4]: ${ }^{4}$ Note that for any positive integer d, and any elliptic curve E / \mathbb{Q} with $E(\mathbb{Q})_{\text {tors }}=G$, there is always an extension K / \mathbb{Q} of degree d such that $E(K)_{\text {tors }}=E(\mathbb{Q})_{\text {tors }}$ (and, in fact, this is the case for almost all degree d extensions).
 ${ }^{5}$ Examples can be found at Table 2 of 17.
 ${ }^{6}$ Examples can be found at Table 1 of [16].

[^5]: ${ }^{7}$ Filip Najman and the second author has developed [15] a (fast) algorithm that takes as input an elliptic curve defined over \mathbb{Q} and an integer d and returns the torsion configurations of degree d for E, that is, $\mathcal{H}_{\mathbb{Q}}(d, E)$. At this moment the algorithm has been run on all elliptic curves Cremona's database and the torsion growth appear in the LMFDB webpage 30 until degree 7 .
 ${ }^{8}$ Including the elliptic curves 162 d 1 and 1296 h 1 that give sporadic torsion $(4,12)$ over sextic fields (see Section 5).

