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Abstract. Given an elliptic curve E/Q with torsion subgroup G = E(Q)tors we study what groups (up to
isomorphism) can occur as the torsion subgroup of E base-extended to K, a degree 6 extension of Q. We also
determine which groups H = E(K)tors can occur infinitely often and which ones occur for only finitely many
curves. This article is a first step towards a complete classification of torsion growth of over sextic fields.

1. Introduction

A fundamental theorem in the field of arithmetic geometry states that given a number field K and an elliptic
curve E defined over K, the set of K-rationals points on E, denoted E(K), can be given the structure of a
finitely generated abelian group. Further, it is well-known that the torsion subgroup of this group E(K)tors
is isomorphic to Z/mZ × Z/mnZ for some positive integers m and n. For the sake of brevity we will write
Z/nZ = (n) and Z/nZ × Z/mnZ = (m,mn) and call (m,mn) the torsion structure of E over K. By abuse of
notation, we write E(K)tors = (m,mn).

Question 1. Given a positive integer d what groups (up to isomorphism) arise as the torsion subgroup of an
elliptic curve defined over a number field of degree d over Q?

Beginning with Mazur’s classification of torsion structures over Q in [32], mathematicians have spent consid-
erable time and effort answering different facets of this question. Mazur’s result asserts that the possible torsion
structures over Q belong to the set:

Φ(1) = {(n) : n = 1, . . . , 10, 12} ∪ {(2, 2m) : m = 1, . . . , 4} .
Over quadratic fields, the classification of torsion structures was completely settled in a series of papers by
Kamienny [23] and Kenku and Momose [28]. Currently there is no complete classification for the case over
cubic extension in the literature, but there are many significant results towards such a classification. In order to
describe what is known we define the following notation:

• Let Φ(d) be the set of groups up to isomorphism that occur as the torsion structure of an elliptic curve
defined over a number field of degree d.
• Let Φ∞(d) ⊆ Φ(d) be the set of groups that arise for infinitely many Q-isomorphism classes of elliptic
curves defined over number fields of degree d,

For degree d = 1, 2, each group in Φ(d) occur for infinitely many elliptic curves and so Φ∞(d) = Φ(d). While
determining the set Φ(d) is still open for d ≥ 3, the uniform boundedness of torsion on elliptic curves, proved
by Merel [33] states that for any d, there exists a bound B(d) depending only on d such that |G| ≤ B(d) for
all G ∈ Φ(d). Thus, the set Φ(d) is finite for any d. While Φ(d) is not completely known, Φ∞(d) is known for
d = 3, 4 thanks to the work of Jeon et al. [21, 22] and d = 5, 6 by Derickx and Sutherland [9]. In this article we
are interested in the sextic case:

Φ∞(6) = {(n) |n = 1, . . . , 22, 24, 26, 27, 28, 30} ∪ {(2, 2m) |m = 1, . . . , 10}
∪ {(3, 3m) |m = 1, . . . , 4} ∪ {(4, 4), (4, 8), (6, 6)}.

Unlike in the cases when d = 1 or 2 when d = 3, 5, or 6 we know that Φ∞(d) ( Φ(d), although it is not known
if Φ(4) and Φ∞(4) coincide. To illustrate this in [35] Najman showed that the elliptic curve defined over Q
with Cremona label 162b1 has a point of order 21 defined over the field Q(ζ9)

+ = Q(ζ9 + ζ−19 ) where ζ9 is a
primitive 9-th root of unity and therefore (21) ∈ Φ(3), but (21) 6∈ Φ∞(3). For degrees d = 5, 6, van Hoeij [19]
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gives examples of elliptic curve defined over number field of degree d (not coming from elliptic curves over Q)
with torsion structure not beloging to Φ∞(d). With this in mind we give the following definition:

• Let J(d) ⊆ Q be the finite set defined by the following property: j ∈ J(d) if and only if there exists a
number field K of degree d, and an elliptic curve E/K with j(E) = j, such that E(K)tors is isomorphic
to a group in Φ(d) that is not in Φ∞(d). We denote by JQ(d) ⊆ Q the subset of J(d) where we restrict
to the case of elliptic curves E defined over Q.

Since Φ(d) = Φ∞(d) when d = 1 or 2 we have that J(1) = J(2) = ∅ and Najman’s examples shows that
−140625/8 ∈ JQ(3).

The question at the center of this paper is how torsion subgroups of elliptic curves can grow when they are
considered over larger fields of definition. In particular, we will be interested in how the torsion subgroup of
E/Q can change when we consider the curve E as being defined over a sextic extension of Q. The techniques in
the paper are closely related to those found in [13] and following that paper we give the following definitions.

• Let ΦQ(d) be the subset of Φ(d) such that H ∈ ΦQ(d) if there is an elliptic curve E/Q and a number
field K of degree d such that E(K)tors = H. Similarly, the set Φ∞Q (d) ⊆ Φ∞(d).
• Let Φ?

Q(d) be the intersection of the sets ΦQ(d) and Φ∞(d).
• Fixed G ∈ Φ(1), let ΦQ(d,G) be the subset of ΦQ(d) such that E runs through all elliptic curves over Q
such that E(Q)tors = G. Also, let Φ?

Q(d,G) = ΦQ(d,G) ∩ Φ∞(d).
• Let RQ(d) be the set of all primes p such that there exists a number field K of degree d and an elliptic
curve E/Q such that E has a point of order p defined over K.

For d = 2, 3, ΦQ(d) have been completely described by Najman [35]:

ΦQ(2) = {(n) | n = 1, . . . , 10, 12, 15, 16} ∪ {(2, 2m) | m = 1, . . . , 6} ∪ {(3, 3), (3, 6), (4, 4)} , and
ΦQ(3) = {(n) | n = 1, . . . , 10, 12, 13, 14, 18, 21} ∪ {(2, 2m) | m = 1, 2, 3, 4, 7} .

The set ΦQ(4) in [4, 14], ΦQ(5) in [11], ΦQ(7) in [14], and moreover in [14] it has been1 established ΦQ(d) = Φ(1)
for any positive integer d whose prime divisors are greater than 7.

For any G ∈ Φ(1) the set ΦQ(d,G) has been determined for d = 2 in [17], for d = 3 in [16], for d = 4 in [13],
for d = 5 in [11], for d = 7 in [14] and for any d whose prime divisors are greater than 7 in [14].

It has been determined in [14] all the possible degrees of [Q(P ) : Q], where P is a point of prime order p for a
set of density 1535

1536 of all primes and in particular for all p < 3167. In particular, this allows to determine RQ(d)
for all d ≤ 3342296. Relevant to this article, is the case of sextic fields:

RQ(6) = {2, 3, 5, 7, 13}.
Finally, notice that the obtaining of the set Φ?

Q(4) has been a main tool to the determination of the whole clas-
sification of ΦQ(4). For the case of quartic fields, there are only 5 transitive groups of S4. The classification of
ΦQ(4) was made separately in Galois and non Galois quartics. Meanwhile for S6 there are 14 transitive groups.
Then a first attempt to obtain ΦQ(6) is to obtain Φ?

Q(6). Similar to what is done in [13] and later in [14].

Lastly we point out here that for the time being, it is not known Φ∞(d) for d > 6. Therefore it is not possible
to compute Φ?

Q(d) for d > 6.
Our first main result determines Φ?

Q(6) and Φ∞Q (6):

Theorem 2. The set Φ?
Q(6) is given by

Φ?
Q(6) = {(n) | n = 1, . . . , 21, n 6= 11, 17, 19, 20} ∪ {(30)}

∪ {(2, 2n) | n = 1, . . . , 7, 9} ∪ {(3, 3n) | n = 1, . . . , 4} ∪ {(4, 4), (6, 6)} ,
and Φ∞Q (6) = Φ?

Q(6) \ {(15), (21), (30)}. In particular, if E/Q is an elliptic curve with j(E) /∈ JQ(6), then
E(K)tors ∈ Φ?

Q(6), for any number field K/Q of degree 6. Moreover, if E/Q is an elliptic curve with E(K)tors =
H over some sextic field K, then

(i) H = (21): j(E) ∈ {33 · 53/2,−32 · 53 · 1013/221,−33 · 53 · 3823/27,−32 · 56/23}.

1Let E/Q be an elliptic curve and K/Q a number field of degree d whose prime divisors are greater than 7, then E(K)tors =
E(Q)tors (see Remark 7.5 [14]).
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(ii) H = (15): then E has Cremona label 50a3,50a4,50b1,50b2,450b4,450b3.
(iii) H = (30): then E has Cremona label 50a3,50b1,50b2,450b4.

Our second result determines Φ?
Q(6, G) for each G ∈ Φ(1):

Theorem 3. For each G ∈ Φ(1), the set Φ?
Q(6, G) is given in the following table:

G Φ?
Q (6, G)

(1)
{(1) , (2) , (3) , (4) , (5) , (6) , (7) , (9) , (10) , (12) , (13) , (14) , (15) ,

(18) , (21) , (2, 2) , (2, 6) , (2, 10) , (2, 14) , (2, 18) , (3, 3) , (3, 9) , (4, 4) , (6, 6) }

(2)
{(2) , (4) , (6) , (8) , (10) , (12) , (14) , (16) , (18) , (2, 2) ,

(2, 6) , (2, 10) , (2, 14) , (2, 18) , (3, 6) , (3, 12) , (6, 6) }

(3)
{(3) , (6) , (9) , (12) , (15) , (21) , (30) , (2, 6) ,

(3, 3) , (3, 6) , (3, 9) , (6, 6) }
(4) {(4) , (8) , (12) , (2, 4) , (2, 8) , (2, 12) , (3, 12) , (4, 4) }
(5) {(5) , (10) , (15) , (30) , (2, 10) }
(6) {(6) , (12) , (18) , (2, 6) , (2, 18) , (3, 6) , (3, 12) , (6, 6) }
(7) {(7) , (14) , (2, 14) }
(8) {(8) , (16) , (2, 8) }
(9) {(9) , (18) , (2, 18) , (3, 9) }
(10) {(10) , (2, 10) }
(12) {(12) , (2, 12) , (3, 12)}
(2, 2) {(2, 2) , (2, 4) , (2, 6) , (2, 8) , (2, 12) , (6, 6) }
(2, 4) {(2, 4) , (2, 8) , (4, 4) }
(2, 6) {(2, 6) , (2, 12) , (6, 6) }
(2, 8) {(2, 8) }

Remark 1. In [15] it has been found that (4, 12) ∈ ΦQ(6) \ Φ?
Q(6). In particular, (4, 12) ∈ Φ(6) \ Φ∞(6).

Moreover, in [15] it has been proved that if E/Q is an elliptic curve defined and K/Q is a sextic extension such
that E(K)tors = (4, 12) then the Cremona label of E is 162d1 or 1296h1 and K = Q(α, i) where α3− 3α− 4. In
particular, these elliptic curve are Q-isomorphic and 109503/64 ∈ JQ(6).

Corollary 4. If JQ(6) = {109503/64}, then ΦQ(6) = Φ?
Q(6)∪{(4, 12)} and ΦQ(6, G) = Φ?

Q(6, G) if G 6= (1), (3)

or ΦQ(6, G) = Φ?
Q(6, G) ∪ {(4, 12)} if G = (1), (3).

Conjecture 5. ΦQ(6) = Φ?
Q(6) ∪ {(4, 12)} = ΦQ(2) ∪ ΦQ(3) ∪ {(30), (2, 18), (3, 9), (3, 12), (4, 12), (6, 6)}.

Notation. Any specific elliptic curves mentioned in this paper will be referred to by Cremona label and a link to
the corresponding LMFDB page [30] for the ease of the reader. Conjugacy classes of subgroups of GL2(Z/pZ)
be referred to by the labels introduced by Sutherland in [40, §6.4]. We write G = H (or G ⊆ H) for the fact
that G is isomorphic to H (or to a subgroup of H resp.) without further detail on the precise isomorphism. By
abuse of notation, we write Z/n1Z× · · · × Z/nrZ = (n1, . . . , nr).

Remark 2. All of the computations in this paper have been performed using Magma [3] and some of the code
has been taken from [8]. All of the code needed to reproduce these computations can be found at [7].

1.1. Acknowledgments. The authors would like to thank Álvaro Lozano-Robledo and Jeremy Rouse for helpful
conversations while working on this project.

2. Background Information

Central to proving the main results of this paper is understanding fields of definition of the points of order
n on an elliptic curve defined over Q. In order to do this we introduce an auxiliary object called the mod n
Galois representations associated to the torsion points of elliptic curves. First, fix an algebraic closure Q of Q.

http://www.lmfdb.org/EllipticCurve/Q/50a3
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http://www.lmfdb.org/EllipticCurve/Q/50b2
http://www.lmfdb.org/EllipticCurve/Q/450b4
http://www.lmfdb.org/EllipticCurve/Q/162d1
http://www.lmfdb.org/EllipticCurve/Q/1296h1
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Given an elliptic curve E/Q and an integer n ≥ 2 we let E[n] = {P ∈ E(Q) | [n]P = O} be the subgroup of
E(Q) consisting of the point of order dividing n. The absolute Galois group Gal(Q/Q) act coordinate-wise on
the point of E[n] and this action induces a representation

ρE,n : Gal(Q/Q)→ Aut(E[n]).

It is a classical result that E[n] is a free rank two Z/nZ-module and thus fixing a basis {P,Q} for E[n] we have
that Aut(E[n]) is isomorphic to a subgroup of GL2(Z/nZ). Therefore, we can write the Galois representation as

ρE,n : Gal(Q/Q)→ GL2(Z/nZ).

where the image of ρE,n, denoted GE(n), is determined up to conjugacy (i.e. a choice of basis for E[n]).
If we let Q(E[n]) = Q({x, y | (x, y) ∈ E[n]}) be the field of definition of the n-torsion points on E, then
Q(E[n])/Q is a Galois extension and since ker ρE,n = Gal(Q/Q(E[n])), from elementary Galois theory we have
that Gal(Q(E[n])/Q) ' GE(n).

Given a point R ∈ E[n], we will denote the x- and y-coordinates of R by x(R) and y(R) respectively and the
field of definition for R will be be denoted by Q(R) = Q(x(R), y(R)). From Galois theory, we know that there is a
subgroup HR of Gal(Q(E[n]/Q) such that Q(R) is the subfield of Q(E[n]) fixed by HR. Letting HR = ρE,n(HR)
we have the following two facts.

(1) [Q(R) : Q] = [GE(n) : HR]

(2) If Q̂(R) is the Galois closure of Q(R) in Q and NGE(n)(HR) is the normalizer of HR in GE(n), then

Gal(Q̂(R)/Q) ' GE(n)/NGe(n)(Hr).
Practically, if we are given GE(n) up to conjugation, one can deduce many algebraic properties of Q(E[n]).
In particular, since E[n] is a free rank 2 Z/nZ-module the n torsion points of E can be (non-canonically)
identified with elements of (Z/nZ)2 by taking their coordinate vectors with respect to a fixed basis. With this
identification, the group HR is exactly the stabilizer of the coordinate vector of R with respect to the action of
GE(n) on (Z/nZ)2. Thus, we can compute all possible degrees of Q(R)/Q where R is a point of exact order n, by
computing the index of the stabilizer of each element of (Z/nZ)2 of order n inside GE(n). Lastly, as consequence
of the Weil pairing we always have that the determinant map det : GE(n)→ (Z/nZ)× is surjective and because
Gal(Q/Q) contains complex conjugation, GE(n) must contain an element of trace 0 and determinant −1. For
more details about this see [41, Proposition 2.2]

2.1. Classifications of the Possible Images of Galois Representations. One of the first major results
that will be regularly used is the complete classification of elliptic curves with cyclic isogenies. We remind the
reader that an elliptic curve E/K has an n-isogeny if there is degree n map φ : E → E′ such that kerφ is a
cyclic subgroup of E[n] of order n. If E/K has a cyclic n-isogeny, we know that E[n] contains a Galois-stable
cyclic subgroup of order n, and thus GE(n) is conjugate to a subgroup of the the Borel group of upper triangular
matrices in GL2(Z/nZ). For the sake of concision, whenever E/Q has a cyclic n-isogeny defined over Q, we will
simply say that E has a rational n-isogeny.

Theorem 6 (Mazur [32] and Kenku [24, 25, 26, 27]). Let E/Q be an elliptic curve with a rational n-isogeny.
Then

(1) n ∈ {1, . . . 19, 21, 25, 27, 37, 43, 67, 163}.
Further, there are infinitely many Q-isomorphism classes of elliptic curves with a rational n-isogeny for all n ∈
{1, . . . , 10, 12, 13, 16, 18, 25} and only finitely many for all the other n listed in (1) and if n ∈ {14, 19, 27, 43, 67, 163}
then E has complex multiplication.

The last results that we will need are related to the classification of possible images of Galois representations
associated to rational elliptic curves of various levels. The first set of results are contained in [41] where Zywina
classifies (among other things) the complete list of possible images of the mod ` Galois representations associated
to rational elliptic curves for all ` ≤ 13. We only need the classification up to ` = 13 because as mentioned above
RQ(6) = {2, 3, 5, 7, 13}. For all of the possible images except three, Zywina gives a complete description of the
elliptic curves over Q whose mod p Galois representation has image conjugate to a subgroup of a given group.
Two of the three remaining cases were handled in [1] by Balakrishnan et al. using the Chabauty-Kim method to
determine all the rational points on “cursed” genus 3 modular curve. While a classification for the last remaining
image (13S4 in Sutherland’s notation) is still just a conjecture, since any curve with this image does not have
a point of order 13 defined over a sextic extension for our purposes the classification is complete. The second
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set of results we will use is contained in [38] where Rouse and Zureick-Brown give a complete account of the
possible 2-adic2 images of Galois representations of elliptic curves without complex multiplication defined over
Q. Besides listing each of the possible images they give a completely determine of the associated moduli spaces
as well, this includes describing all of the rational points on each modular curves.

Finally a specific result about rational isogenies for torsion growth over sextic field.

Lemma 7. Let E/Q be an elliptic curve without complex multiplication, K/Q a sextic field and Pp ∈ E(K)tors a
point of odd prime order p. Then E has a rational p-isogeny, except if E has Cremona label 2450ba1 or 2450bd1,
and p = 7, where there is not rational 7-isogenies. Moreover, in those last cases, the unique sextic fields where
the torsion grows are K = Q(E[2]) and K ′ = Q(P7) (K ′/Q is a non-Galois), where E(K)tors = (2, 2) and
E(K ′)tors = (7) respectively.

Proof. We have that p ∈ RQ(6) = {2, 3, 5, 7, 13}. Looking at the Table 4 we see that, unless GE(7) is conjugate
to 7Ns.2.1, is must be that E has a rational p-isogeny. For the case 7Ns.2.1, [41, Theorem 1.5 (iii)] says that
E has Cremona label 2450ba1 or 2450bd1. For those two curves we have that they have no rational isogenies
and the unique exceptional prime (ρE,p is non-surjective) for E is p = 7, then by Table 4 we have that the sextic
fields where the torsion grows are K = Q(E[2]) and K ′ = Q(P7) and computing the torsion over that number
fields we obtain the desired result. �

2.2. Elliptic Curves with Complex Multiplication. Let ΦCM(d) be the set consisting of the torsion sub-
groups ofelliptic curves with complex multiplication (or CM for short) defined over field of degree d. Table 1
lists the sets ΦCM(d) such that d | 6 since these will be that ones that we use in this article. Proofs of the results
in Table 1 can be found in [36, 34, 10, 37, 5].

d ΦCM(d)

1 {(1) , (2) , (3) , (4) , (6) , (2, 2)}
2 ΦCM(1) ∪ {(7) , (10) , (2, 4) , (2, 6) , (3, 3) }
3 ΦCM(1) ∪ { (9) , (14) }
6 ΦCM(2) ∪ ΦCM(3) ∪ { (18) , (19) , (26) , (2, 14) , (3, 6) , (3, 9) , (6, 6) }

Table 1. ΦCM(d), for d | 6.

3. Proof of the Main Auxiliary Results

The determination of Φ?
Q(6) and Φ?

Q(6, G) will rest on Proposition 8 and 9 for the case non-CM and CM,
respectively.

Proposition 8. Let E/Q be an elliptic curve without complex multiplication and K/Q a sextic number field such
that E(Q)tors = G and E(K)tors = H.

(a) 11, 17 and 19 do not divide the order of H.
(b) Let G2 (resp. H2) denote the 2-primary part of G (resp. H) then the only possible 2-primary torsion

growth are given in Table 2. For each entry in the table a (−) indicates that the growth from G2 to H2

cannot happen. If the growth from G2 to H2 is possible, we give the modular curve in the notation of [38]
that parameterizes elliptic curves with this growth. That is, E(Q)tors contains a subgroup isomorphic to
G2 and there is a sextic extension K/Q such that E(K)tors contains a subgroup isomorphic to H2 if and
only if E corresponds to a rational point on the given modular curves.

(c) If (4) ⊆ G, then (20) 6⊆ H.
(d) If (8) ⊆ G, then (24) 6⊆ H.
(e) If (2, 2) ⊆ G, then (2, 10) 6⊆ H.
(f) If (2, 4) ⊆ G, then (2, 12) 6⊆ H.
(g) If G = (12), then H 6= (24).
(h) If G = (2, 2), then (2, 14) 6⊆ H.

2The p-adic Galois representations associated to an elliptic curve are constructed by taking the inverse image of the mod pn

Galois representations.

http://www.lmfdb.org/EllipticCurve/Q/2450ba1
http://www.lmfdb.org/EllipticCurve/Q/2450bd1
http://www.lmfdb.org/EllipticCurve/Q/2450ba1
http://www.lmfdb.org/EllipticCurve/Q/2450bd1
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HHH
HHHG2

H2 (1) (2) (4) (8) (16) (2, 2) (2, 4) (2, 8) (4, 4)

(1) X1 X1 X20 − − X1 − − X20b

(2) − X6 X13 X102, X36a X235m X6 − − −
(4) − − X13h X36n − − X13h X102k X60d

(8) − − − X102p X235l − − X102p −
(2, 2) − − − − − X8 X25, X8d X193, X96q, X98o −
(2, 4) − − − − − − X25n X96t, X98e X58i

(2, 8) − − − − − − − X193n −
Table 2. Classification of the possible growth in 2-primary component over a sextic field.

(i) If G = (1) and (3, 6) ⊆ H, then (6, 6) ⊆ H.
(j) If G = (3), then H 6= (3, 12).
(k) H 6= (20).
(l) If G = (3), then H 6= (18).

(m) If (2, 2) ⊆ G, then (2, 18) 6⊆ H.
(n) If G = (3), then H 6= (2, 18).
(o) If G = (7), then (21) 6⊆ H.
(p) If G = (2), (4) or (6), then H 6= (24).
(q) (26) 6⊆ H.
(r) H 6= (27).
(s) H 6= (28).
(t) If G 6= (3) or (5), then H 6= (30).

Proof. (a) By [14] we have 11, 17, 19 /∈ RQ(6) = {2, 3, 5, 7, 13}.

(b) As mentioned in Section 2, Rouse and Zureick-Brown completely classify all of the possible 2-adic images
of Galois representations associated to elliptic curves without CM defined over Q in [38]. For each of the possible
images the second author together with Lozano-Robledo computed the degree of the field of definition of the
(2i, 2i+j) torsion for i+j ≤ 6 in [12] and recoded the data in a text file titled 2primary_Ss.txt. Using the results
of [12] we write a program that takes as its input a degree d and returns an associative array whose keys are all
the possible 2-primary parts of E(Q)tors and E(K)tors of elliptic curves defined over Q and base-extended to a
degree d number field K over Q. The objects associated with each of these curves are the labels of the modular
curves (in the notation of [38]) that parameterize each of the possible growths in two primary components. This
algorithm and its output can be found in [7] in the file labeled RZB_Search.txt.

(c), (d), (e) and (f): See Remark below Theorem 7 of [13].

(g) The 2-divisibility method [20, Section 3] asserts that if a point Q satisfies 2Q = P then [K(Q) : K] ≤ 4
(see [20, Remark 3.2]). In the particular case of K = Q and P of order 12, we have that (24) is a subgroup of
some group in ΦQ(d) for d ≤ 4. But we know that this can only happen in a quartic extension [14, Corollary
8.7] of Q and thus cannot happen over a sextic extension.

(h) Suppose that G = (2, 2) and (2, 14) ⊆ H. Since (2, 14) is not a subgroup of any group in ΦQ(d, (2, 2)) for
d = 2, 3 by [17, Theorem 2] and [16, Theorem 1.2] respectively, we have that E gain a point of order 7 over a
sextic field, and not over any number field of degree less than 6. By Lemma 7 we have that, unless GE(7) is
conjugate to 7Ns.2.1, E has a rational 7-isogeny. In the former case we have G = (1) therefore we can exclude
it for the rest of the proof. Now, since G = (2, 2), then E is 2-isogenous (over Q) to two curves E′ and E′′, such
that E, E′, and E′′ are all non-isomorphic pairwise. Further, there is a rational 4-isogeny from E′ to E′′ that
is necessarily cyclic. Moreover, since E has a rational 7-isogeny, if follows that E′ also has a rational 7-isogeny,
and therefore E′ would have a rational 28-isogeny which is impossible by Theorem 6.
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(i) Suppose that G = (1) and (3, 6) ⊆ H. Checking Table 4 we see that the only way that we can go from
trivial torsion to having full 3-torsion over a sextic extension of Q is for GE(3) is conjugate to 3B.1.2. Therefore,
we can pick a basis P3, P

′
3 for E[3] such that [Q(P3) : Q] = 2 and [Q(P ′3) : Q] = 3 and K = Q(P3, P

′
3) is an

S3-extension of Q, since 3B.1.2 is isomorphic to S3. Next, in order to pick up a point P2 not defined over Q,
it must be that [Q(P2) : Q] = 3 where GE(2) is conjugate to 2Cn or ρE,2 is surjective. In the first case we have
Q(P2) = Q(E[2]) ⊆ K. In the second case Q(E[2]) is the Galois closure of Q(P2), that is the S3-extension of Q
that contains Q(P2). Therefore, Q(E[2]) = Q(E[3]). In both case we obtain that (6, 6) ⊆ E(K)tors. Therefore
H cannot equal (3, 6).

(j) If G = (3) and H = (3, 12), then we know that E must have a rational 3-isogeny and from part (b) in
order for E/Q to gain a point of order 4 over a sextic extension E must correspond to a Q-rational point on
the modular curve X20. Taking the fiber product of X0(3) and X20 we get a singular genus 1 curve C whose
desingularization is the elliptic curve E′/Q with Cremona label 48a3 and E′(Q) = (2, 4). Inspecting the rational
points on C we get that there are 4 non-singular non-cuspidal points corresponding to the j-invariants 109503/64
and −35937/4. For each of these j-invariants there is exactly one Q-isomorphism class that has a point of order
3 defined over Q. Representatives of these classes are the curves with Cremona label 162a1 and 162d1. Checking
the 3-division fields of each of these curves, we see that neither gains full 3-torsion and a point of order 6 over
the same sextic extension of Q.

(k) If (2) ⊆ G or G = (10), then E has a rational point of order 2 and the 2-power division fields are all
2-extensions of Q. Therefore, if H = (20) it must be that if P4 is the point of order 4 over K, then Q(P4) is a
quadratic extension of Q. Further, by Table 4, the only way that E can have a point P5 of order 5 over K is if
Q(P5) is defined over a quadratic extension of Q. If K is a sextic extension then it must be that Q(P4) ⊆ Q(P5)
and E actually has a point of order 20 defined over a quadratic extension which is impossible.

Lastly, if G = (1) or (5) and H = (20), then we E gains a point P4 of order 4 over a degree 3 or 6 field and
from part (b), the only way this can happen is if E corresponds to a rational point on the curve X20 from [38].
Again by Lemma 7, in order to gain a point of order 5 over a sextic extension, E must have a rational 5-isogeny.
Computing the fiber product of X20 and X0(5) we get a genus 3 hyperelliptic curve C with Aut(C) = (2, 2).
The automorphism group of C is generated by the hyperelliptic involution and another automorphism of order
two, call it φ. The curve, E′ obtained by quotienting out by φ is the elliptic curve with Cremona label 80a4
which has E′(Q) = (4). Computing the preimage of the 4 points on E′ we see that C(Q) consists of exactly 3
points, two of which are singular and one is a cusp at infinity. Thus, there are no elliptic curves over Q that gain
a point of order 4 over a sextic and have a rational 5-isogeny.

(l) Suppose towards a contradiction that G = (3) and H = (18) and let P2 and P9 be points in E(K) of
order 2 and 9 respectively. Since E(Q)[2] is trivial it must be that [Q(P2) : Q] = 3 and from [14, Proposition
4.6] we have that [Q(P9) : Q] = 2, 3 or 6. From [17] we know that [Q(P9) : Q] 6= 2 and from [16] we know that
[Q(P9) : Q] 6= 3 since there are no elliptic curves who torsion grows from (3) to (18) over a cubic. So it must
be that [Q(P2) : Q] = 3, [Q(P9) : Q] = 6 and K = Q(P9). So we search in Magma for subgroups of GL2(Z/9Z)
that would correspond to an elliptic curve with a rational point of order 3 and a point of order 9 defined over
a degree 6 extension of Q. We get that this can happen in 3 different ways according to the Galois closure of
Q(P9). That is, Gal(K̂/Q) ∼= C6, S3, or C3 × S3. In the first two cases, we have that K̂ = K = Q(P9) and since
Q(P2) ⊆ Q(P9) we know that the Galois closure of Q(P2), which is Q(E[2]), is contained in K and this is a
contradiction to the assumption that H = (18), and cyclic. Therefore, it must be that Gal(K̂/Q) = C3×S3 and
we have the following field diagram:

K̂

K

3

Q(E[2]) = Q(P2,
√

∆)

3

Q(P2)

2

2

Q
3

http://www.lmfdb.org/EllipticCurve/Q/48a3
http://www.lmfdb.org/EllipticCurve/Q/162a1
http://www.lmfdb.org/EllipticCurve/Q/162d1
http://www.lmfdb.org/EllipticCurve/Q/80a4
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where ∆ is the discriminant of E and ∆ is not a square since Q(E[2]) 6⊆ K. But, since there is unique subgroup
of C3 × S3 of index 2, we know that there is a unique quadratic extension of Q inside K̂ and by the above field
diagram it must be that Q(

√
∆) is inside of K. This means that K = Q(P9) = Q(P2,

√
∆) = Q(E[2]) which is

a Galois extension of Q giving us a contradiction.

(m) We have that (2, 18) is not a subgroup of any group in ΦQ(d) for d = 2, 3. Therefore we have that there
must exist a point P3 of order 3 such that [Q(P3) : Q] = 6 and there is not other point of order 3 defined over a
number field of degree less than 6. According to Table 4 this cannot happen.

(n) Suppose towards a contradiction that G = (3) and H = (2, 18). Let P9 be the point of order 9 defined
over K. In this case we have that [Q(P9) : Q] = 2, 3 or 6 and [Q(E[2]) : Q] = 3 or 6. We can exclude the
case [Q(P9) : Q] = 2 since (9) is not the subgroup of some group in ΦQ(2, (3)) (see [17, Theorem 2]). From [16]
we know that both of these indices cannot be 3. Suppose that [Q(P9) : Q] = 3 and [Q(E[2]) : Q] = 6. This
means that Q(P9)/Q is a degree 3 subfield of Q(E[2]) and so E must have a point of order 2 defined over Q(P9).
In this case we would have Q(P9)/Q is a cubic extension where E(Q(P9))tors = (18) but this can not happen
from [16, Theorem 1.2]. Therefore it must be that [Q(P9) : Q] = 6 and K = Q(P9). Just as in part (l) there
are only 3 possible options for Gal(K̂/Q) they are C6, S3, and C3 × S3. The third case gives the exact same
contradiction as in part (l), while if Gal(K̂/Q) = C6, or S3, then Q(P9)/Q is a Galois extension and 〈P9〉 is a
cyclic Galois stable subgroup of E(K). Therefore GE(9) must be conjugate to a subgroup of the Borel subgroup
of GL2(Z/9Z), implying that 〈P9〉 must be the kernel of a rational n-isogeny and Q(P9)/Q must be a cyclic
extension. Therefore, Gal(K/Q) = C6 and E has a rational 9-isogeny. Since Q(E[2]) ⊆ Q(P9) and Q(E[2])/Q is
Galois, it must be that Gal(Q(E[2])/Q) ' C3 which can only happen if E has square discriminant. Checking in
Magma we see that there are no curves with a rational 9-isogeny and square discriminant.

(o) By [17, Theorem 2] and [16, Theorem 1.2] we have that if E gains a point P3 of order 3 over a sextic field
then [Q(P3) : Q] = 6 and there is no other point of order 3 defined over a number field of degree less than 6.
But this is impossible by Table 4.

(p) Suppose G = (2), (4) or (6). In all of these cases E has a rational point of order 2 and so the Tate module
T2(E) is a tower of 2-extensions. Therefore, if P8 is a point of order 8 on E defined over a sextic extension of Q,
then it must be that [Q(P8) : Q] = 2 and thus, by [8, Lemma 4.6], E has a rational 8-isogeny. Further, if E gains
a point of order 3 over a sextic extension of Q, then by Lemma 7 E must have a rational 3-isogeny. Therefore
in all of these cases, if H = (24) then E must have a rational 24-isogeny which is impossible by Theorem 6.

(q) Let be P2, P13 ∈ E(K)tors of order 2 and 13 respectively. By Lemma 7, E has a rational 13-isogeny. In the
case that Q(P2) = Q we have that there is a rational 26-isogeny which cannot happen by Theorem 6. Now, if
Q(P2) 6= Q, then [Q(P2) : Q] = 3 and Q(P2) ⊆ Q(P13). Note that Q(P2) 6= Q(P13), since (26) is not a subgroup
of some group in ΦQ(3). Therefore [Q(P13) : Q] = 6 and Table 4 shows that GE(13) is conjugate to 13B.3.4 or
13B.4.1. In both cases we have that the field Q(P13) is Galois and cyclic of order 6 (see (2) from Section 2). If
ρE,2 is non-surjective, then the Galois group of Q(P2) is isomorphic to GL2(Z/2Z) contradicting the fact that
Q(P2) ( Q(P13). The remaining case is when GE(2) is conjugate to 2Cn. The fiber product of the genus 0 modu-
lar curves X0(13) and X2Cn is the elliptic curve with Cremona label 52a2 who has only the affine point (0, 0). This
point does not correspond to an elliptic curve in X0(13) or X2Cn. Therefore we have proved that (26) 6⊆ E(K)tors.

(r) Suppose that H = (27), then G = (1), (3) or (9). By Lemma 7, E have a rational 3-isogeny. Therefore,
GE(27) must conjugate to a subgroup of π−1(B(3)), where B(3) is the Borel subgroup of GL2(Z/3Z) and
π : GL2(Z/27Z)→ GL2(Z/3Z). Constructing a list of the subgroups of π−1(B(3)) with surjective determinant,
containing an element corresponding to complex conjugation, and not conjugate to a subgroup of B(27) (since
the only curves with a rational 27-isogeny have CM) we find there are 687 of possible images for ρE,27. Of
those 687 of images, 42 of them would give rise to an elliptic curve with a point of order 27 over a sextic.
Among those 42 possibilities there are exactly 7 maximal elements all of which are conjugate to a subgroup of
B(9). Five of these 7 maximal groups reduce to subgroups of GL2(Z/3Z) that are conjugate to subgroups of
the split Cartan subgroup. If E were an elliptic curve whose mod 27 Galois representation is conjugate to a
subgroup of one of these 5 groups, then E would have to have independent rational 3- and 9-isogenies. From

http://www.lmfdb.org/EllipticCurve/Q/52a2
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[35, Lemma 7], any elliptic curve with independent rational 3- and 9-isogenies is isogenous to an elliptic curve
with a rational 27-isogeny and from [31, Table 4] there is only one elliptic curve (up to Q-isomorphism) with a
rational 27-isogeny. The Q-isomorphism class of curves with a 27-isogeny has j-invariant equal to −215 · 3 · 53
and consist of all quadratic twists of the elliptic curve with Cremona Reference 27a2. Since isogeny classes are
invariant under quadratic twist it is sufficient to check the isogeny class of 27a2 in the LMFDB database [30] to
see the only way that E can have an independent rational 3- and 9-isogeny is if j(E) = 0 and E thus has CM.
Therefore, GE(27) must be conjugate to a subgroup of one of the remaining two maximal groups. These two
groups are

G1 =

〈(
1 0

0 −1

)
,

(
2 0

0 1

)
,

(
10 22

18 10

)〉
and G2 =

〈(
1 0

0 −1

)
,

(
2 0

0 1

)
,

(
19 4

9 19

)〉
.

Working in Magma we see that G1 ∩ SL2(Z/27Z) (resp. G2 ∩ SL2(Z/27Z)) is conjugate to a subgroup of the
group with Cummins-Pauli label 27A2 (resp. 27B4). The modular curves that correspond to the group 27A2

and 27B4 are genus 2 and 4 respectively and it was shown in the proof of Proposition 5.18 in [8], that the only
Q-rational points on these curves are cusps. Therefore there are no elliptic curves over Q whose mod 27 image
is contained in either G1 or G2.

(s) If H = (28) then E gain a point of order 7 over a sextic field. Then, by Lemma 7, if E has not a rational
7-isogeny then E(K)tors = (7) or E(K)tors = (2, 2). Therefore we have that E must have a rational 7-isogeny.
Now, first suppose that (2) ⊆ G, then E would have a rational 14-isogeny defined over Q and from Theorem 6
this can only happen if E has complex multiplication.

If G = (1) and H = (28) then E must gain a point of order 4 over a cubic or a sextic extension of Q which from
part (b) can only happen if E corresponds to a rational point on the genus 0 curve X20 from [38]. So it must be
that E comes from a point on X20 and a point on X0(7). Computing the fiber product of X0(7) and X20, we get
a genus 3 hyperelliptic C with Aut(C) = (2, 2, 2). Quotienting out by one of the automorphisms of order 2 that
is not the hyperelliptic involution we get the elliptic curve E′ with Cremona label 14a4 satisfying E′(Q) = (6).
Pulling the 6 points in E′(Q) back to C(Q) we see that there are exactly 4 non-cuspidal and non-singular rational
points on C corresponding to the j-invariants −33 · 13 · 4793/214 and 33 · 13/22. From [41, Theorem 1.5], all
of the twists of these curves have the kernel of their rational 7-isogeny defined over a cyclic sextic extension
of Q except for two of them. Further, the only way that E can have the 2-primary component of its torsion
grows from trivial to (4) over a cyclic sextic extension of Q is if it actually grow over a quadratic extension of
Q. This is because the point of order 4 would define the kernel of a rational isogeny and hence by [8, Lemma
4.8] the degree of its field of definition would have to divide ϕ(4) = 2, but this cannot happen by [17, Theorem
2]. Therefore, we can rule out these curves since Q(P7) can never coincide with Q(P4). Next from [41, Theorem
1.5], we know that for each of these j-invariants there are exactly one twist (up to Q-isomorphism) such that the
kernel of their rational 7-isogeny are defined over a cyclic cubic extensions of Q. The Q-isomorphism classes in
question are represented by the elliptic curves with Cremona label 338b1 and 16562be2 and we eliminate these by
checking that the 2-division field and the cubic field where the kernel of the rational 7-isogeny intersect only in Q.

Next if G = (7), again E must have a rational 7-isogeny and so in order to gain a point of order 4 it must
have j-invariant −33 · 13 · 4793/214 and 33 · 13/22, but none of these curves have a rational point of order 7.

(t) By Lemma 7 the only way for a curve to gain a point of order 3 or 5 over a sextic extension is for E to have
a rational 3- or 5-isogeny respectively. Therefore, if G = (2), (6) or (10) and H = (30), E must have rational
30-isogeny which is impossible by Theorem 6.

If G = (1), then again E must have a rational 15-isogeny and j(E) ∈ {−52/2,−52 · 2413/23,−52 · 293/25, 5 ·
2113/215} (see [31, Table 4]). Further, by [8, Lemma 4.8] we know that the kernel of the rational 15-isogeny is
defined over a field of degree dividing ϕ(15) = 8. Therefore, if the kernel of the rational 15-isogeny is defined
over a sextic field, it must be in fact be defined over a quadratic field. But from [35, Theorem 2 (c)] there are
no curves with G = (1) and a point of order 15 over a quadratic field, so this is not possible. Thus the kernel of
the rational 15-isogeny cannot be defined over a sextic extension.

Looking at Table 4 we see that the only way to have a point of order 3 and a point of order 5 defined over
a sextic field without having any rational points (since we are in the case where G = (1)) is for the point of

http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/27/a/
http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/14a4
http://www.lmfdb.org/EllipticCurve/Q/338b1
http://www.lmfdb.org/EllipticCurve/Q/16562be2
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order 5 to be defined over a quadratic extension of Q (i.e. GE(5) is conjugate to a subgroup of 5B.4.1) and
the point of order 3 has to be defined over a cubic extension or a sextic extension of Q (i.e. GE(3) is conjugate
to 3B.2.1 or 3B respectively). We point out here that 3B.2.1 is contained inside of 3B and in fact the group
generated by 3B.2.1 and −I is equal 3B. Therefore the j-maps from these modular curves are the same and for
each Q-isomorphism class corresponding to a point on the modular curve X3B = X0(3) there is a unique twist
such that GE(3) is conjugate to 3B.2.1. Constructing the fiber product of these two genus 0 modular curves
we get the elliptic curve E′/Q with Cremona label 15a3 and E′(Q) = (2, 4). The rational points of E′ give
4 nonsingular noncuspidal points corresponding to the two j-invariants 5 · 7 · 11 · 43 · 421/215 and −5 · 293/25.
Using [41, Theorem 1.2], we see that each of these two curves has exactly 1 twist (up to Q-isomorphism) with
a point of order 3 defined over a cubic field. The Q-isomorphism classes in question are represented by curves
with Cremona label 50a4 and 450b3. Examining the division fields of these curves we see that the cubic fields
where they gain a point of order 3 are disjoint from the 2-division fields. Since these division fields are invariant
under twisting, no twist of these curves can gain a point of order 30 over a sextic extension of Q.

Before moving on, we point out the following: if E/Q is either the elliptic curve with Cremona label 50a4 or
450b3 and P15 is the point of order 15 defined over a sextic extension of Q, then from [41, Theorems 1.3 and 1.5]
twisting E by a square free integer d can only affect the degree of the field of definition of P15 in the following
ways. If d = −3, then Ed has a rational point of order 3 and if d = 5 then Ed has a rational point of order 5
and in both of these cases G 6= (1). If d is any other square-free integers, the field of definition of the point of
order 15 becomes Q(P15,

√
d)/Q which is a degree 12 extension. Therefore, these are the only two curves with

G = (1) and H = (15) up to Q-isomorphism. �

For the case when E/Q is an elliptic curve with complex multiplication give the following result:

Proposition 9. Let E/Q be an elliptic curve with complex multiplication and K/Q a sextic number field such
that E(Q)tors = G and E(K)tors = H.

(A) 11, 13, 17 and 19 do not divide the order of H.
(B) If G = (1) or (2), then H 6= (2, 4).
(C) If G = (2, 2), then (2, 14) 6⊆ H.
(D) If G = (1), then H 6= (3, 6).
(E) If G = (3), then H 6= (18).

Proof. (A) We know that RQ(6) = {2, 3, 5, 7, 13}, then we only need to proof the statement for 13. By [41, §1.8]
we have that GE(13) is 13Ns, 13Nn or G3(13). Therefore by Theorem 5.6 [14] we have an explicit characterization
of the degree [Q(P13) : Q] where P13 is a point of order 13. In particular the minimum degree of Q(P13)/Q is 24.

(B) First suppose towards a contradiction that G = (1) andH = (2, 4). From [17, 16] we know that this growth
cannot happen over a quadratic or cubic extension of Q. Next since G = (1) we have that [Q(E[2]) : Q] = 3
or 6 and the only way that [Q(E[2]) : Q] = 3 is if the discriminant of E is a square. Looking at the tables of
CM elliptic curves over Q in [39, Appendix A, §3] we check that there is only one Q-isomorphism class of CM
elliptic curves with an square discriminant, all of the form y2 = x3− r2x with r ∈ Q. All of these curves has full
2-torsion over Q and thus do not have G = (1). So we may assume that [Q(E[2]) : Q] = 6 and thus Q(E[2]) = K
is a Galois extension of Q. Now, from [8, Lemma 4.6] since K/Q is Galois and E(K)tors = (2, 4) we know that
E must have a rational 2-isogeny which can only happen if E has a rational point of order 2 contradicting the
assumption that G = (1).

Next suppose towards a contradiction that G = (2) and H = (2, 4). Again, from [17, 16] we know that this
growth cannot happen over a quadratic or cubic extension of Q. In this case [Q(E[2]) : Q] = 2 and so there must
be a point of order 2 defined over a quadratic field that become divisible by 2 in a cubic extension, but this is
impossible by [14, Proposition 4.6].

(C) Since G = (2, 2) we have that E : y2 = x3 − r2x for some r ∈ Q (see [41, Proposition 1.15]). In particular
j(E) = 1728 and [41, Proposition 1.14] shows that GE(7) is conjugate to 7Nn. In this case, if P is a point of
order 7, we have [Q(P ) : Q] = 48 > 6.

(D) Analogous to the proof of Proposition 8 (i) we need a point P2 ∈ E[2] not defined over Q, no rational
points of order 3 and [Q(E[3]) : Q] divides 6. By Propositions 1.14, 1.15 and 1.16 from [41] and [14, Theorem 5.7]
this is only possible if ρE,2 is non-surjectiver and GE(3) is conjugate to 3B.1.2. This gives the same contradiction

http://www.lmfdb.org/EllipticCurve/Q/15a3
http://www.lmfdb.org/EllipticCurve/Q/50a4
http://www.lmfdb.org/EllipticCurve/Q/450b3
http://www.lmfdb.org/EllipticCurve/Q/50a4
http://www.lmfdb.org/EllipticCurve/Q/450b3
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as Proposition 8 (i).

(E) Note that in the proof of the similar statement but without complex multiplication (see Proposition 8 (l))
we have not used the condition that the elliptic curve is without complex multiplication. �

Theorem 10. Let E/Q be an elliptic curve. If E(K)tors = (21) over some sextic number field K, then j(E) ∈
{33 · 53/2,−32 · 53 · 1013/221,−33 · 53 · 3823/27,−32 · 56/23}.

Proof. By Lemma 7, If E has Cremona label 2450ba1 or 2450bd1 then E(K)tors 6= (21), otherwise if E(K)tors =
(21) then E has a rational 3− and a rational 7−isogeny. Therefore a rational 21-isogeny. That is j(E) ∈
{33 · 53/2,−32 · 53 · 1013/221,−33 · 53 · 3823/27,−32 · 56/23} by the classification of the rational points in X0(21)
(see [31, Table 4]). �

Theorem 11. Let E/Q be an elliptic curve, K/Q a sextic number field and E(K)tors = H. Then
(i) If H = (15), then E has Cremona label 50a3, 50a4, 50b1, 50b2, 450b4, or 450b3.
(ii) If H = (30), then E has Cremona label 50a3, 50b1, 50b2, or 450b4.

Proof. From the proof of Proposition 8 (t), we know that the only elliptic curves with G = (1) and H = (15) or
(30) are the elliptic curves with 50a4 and 450b3 and they both have H = (15). Therefore, all that remains to
classify are the elliptic curve with G = (3) or G = (5) and H = (15) or H = (30).

Starting with an elliptic curve with G = (3), from Table 4 we get that the only way to gain a point of order
5 over a sextic field is to gain it over a quadratic extension of Q. So first classify all elliptic curves with a
point of order 3 over Q and a rational 5-isogeny defined over a quadratic extension. In order to have a rational
point of order 3, it must be that GE(3) is conjugate to a subgroup of 3B.1.1 while having a point of order 5
defined over a quadratic extension requires GE(5) to be conjugate to a subgroup of 5B.4.1. Computing the
fiber product of the two corresponding genus 0 modular curves we see that there curves are exactly two curves
(up to Q-isomorphism) that simultaneously have these properties and they are ones with Cremona label 450b4
and 50a3. Because these curves gain a point of order 15 over a quadratic extension and every elliptic curve with
trivial 2 torsion gains a point of order 2 over a cubic extension, we know that for each of 450b4 and 50a3 there
is a sextic extension of Q where H = (15) and a sextic extension of Q where H = (30).

Lastly, we classify the elliptic curves that have G = (5) and a rational 3-isogeny. This time to have a rational
point of order 5 GE(5) must be conjugate to 5B.1.1 while a rational 3-isogeny requires that GE(3) is conjugate
to a subgroup of 3B. Computing the fiber product of these two genus 0 modular curves we see that there are
exactly two elliptic curves (up to Q-isomorphism) with both these properties simultaneously and they are the
curves with Cremona label 50b1 and 50b2. Again for both 50b1 and 50b2 there is a quadratic extension of Q
where E gains a point of order 3 and so for each of these curves there is a sextic extension of Q where H = (15)
and a sextic extension of Q where H = (30). �

Remark 3. The following table shows the sextic fields (or subfields) where the torsion grows to (15) or (30):

G
HHH

HHHE
H

(15) (30)

(3) 50a3 Q(
√

5) Q(
√

5, α)

(1) 50a4 Q( 6
√

5) −
(5) 50b1 Q(

√
5) , Q(

√
−15, β) Q(

√
5, α)

(5) 50b2 Q(
√
−15) , Q( 6

√
5) Q(

√
−15, α)

(3) 450b4 Q(
√
−15) Q(

√
−15, α)

(1) 450b3 Q(
√
−15, β) −

where α3 − α2 + 2α+ 2 = 0 and β3 − β2 − 3β − 3 = 0.

Theorem 12. There are infinitely many non-isomorphic (over Q) elliptic curves E/Q such that there is a sextic
number field K with E(K)tors = (2, 18) (resp. (3, 9), (3, 12), (6, 6)).

Proof. Given G ∈ Φ(1) there exist a one-parameter family, called the Kubert-Tate normal form,

T G
t : y2 + (1− c)xy − by = x3 − bx2, where b, c ∈ Q(t),

http://www.lmfdb.org/EllipticCurve/Q/2450ba1
http://www.lmfdb.org/EllipticCurve/Q/2450bd1
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/50a4
http://www.lmfdb.org/EllipticCurve/Q/50b1
http://www.lmfdb.org/EllipticCurve/Q/50b2
http://www.lmfdb.org/EllipticCurve/Q/450b4
http://www.lmfdb.org/EllipticCurve/Q/450b3
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/50b1
http://www.lmfdb.org/EllipticCurve/Q/50b2
http://www.lmfdb.org/EllipticCurve/Q/450b4
http://www.lmfdb.org/EllipticCurve/Q/50a4
http://www.lmfdb.org/EllipticCurve/Q/450b3
http://www.lmfdb.org/EllipticCurve/Q/450b4
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/450b4
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/50b1
http://www.lmfdb.org/EllipticCurve/Q/50b2
http://www.lmfdb.org/EllipticCurve/Q/50b1
http://www.lmfdb.org/EllipticCurve/Q/50b2
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/50a4
http://www.lmfdb.org/EllipticCurve/Q/50b1
http://www.lmfdb.org/EllipticCurve/Q/50b2
http://www.lmfdb.org/EllipticCurve/Q/450b4
http://www.lmfdb.org/EllipticCurve/Q/450b3
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such that G is a subgroup of T G
t (Q(t))tors for all but finitely many values of t ∈ Q (cf. [29, Table 3]). For

G = (9) and G = (12) we have

G = (9) : c = t2(t− 1) , b = c(t2 − t+ 1) t 6= 0, 1,

G = (12) : c = (3t2 − 3t+ 1)(t− 2t2)/(t− 1)3 , b = c(2t− 2t2 − 1)/(t− 1), t 6= 0, 1, 1/2

Thanks to the classification of Φ(1) we have that for those values of t ∈ Q we have T G
t (Q)tors = G. Moreover,

T G
t has not CM since G /∈ ΦCM(1). Since T G

t has a rational point of order 3, Table 4 tell us that the image of
the mod 3 Galois representation attached to T G

t is labeled 3Cs.1.1 or 3B.1.1. The former case can not happen
since in that case [Q(T G

t [3]) : Q] = 2, but (3, 9), (3, 12) are not subgroups of some group in ΦQ(2). For the
case 3B.1.1 we have [Q(T G

t [3] : Q] = 6. Therefore K = Q(T G
t [3]) is a sextic field satisfying (3, 9) if G = (9)

(resp. (3, 12) if G = (12)) is a subgroup of T G
t (K). But this happens for infinitely many values of t and since

(3, 9) (resp. (3, 12)) is a maximal subgroup in Φ∞(6) we have that, in fact, T G
t (K)tors = (3, 9) (resp = (3, 12)).

Now, let be G = (9) and K = Q(T G
t [2]). Then (2, 18) is a subgroup of T G

t (K). We have that [K : Q] = 6,
since otherwise (2, 18) is a subgroups of some group in ΦQ(d) for d dividing 6. That is impossible. Analogous to
the cases above, we have that in this case T G

t (K)tors = (2, 18).
Finally the case (6, 6). Let be the one-parameter family3 given by:

At : y2 = x3 − 3(a− 1)3(a− 9)x− 2(a− 1)4(a2 + 18a− 27), a = (t3 − 1)2, t 6= 0, 1.

This elliptic curve satisfies Q(At[2]) = Q(At[3]). In particular, the field K = Q(At[6]) is of degree 6. Then (6, 6)
is a subgroup of At(K). An analogous argument to above proves that At(K)tors = (6, 6).

Since the j-invariant of T G
t and At is not constant, this proves that there are infinitely many non Q-isomorphic

elliptic curve over Q with torsion structures H = (2, 18), (3, 9), (3, 12) or (6, 6) over sextic fields. �

4. Proof of Theorems 2 and 3

The results in section 3 are exactly the results necessary to proof the main theorems of the paper.

Proof of Theorem 2. For d = 2, 3 we have that ΦQ(d) ⊆ ΦQ(6) and ΦQ(d) ⊆ Φ∞(6). Therefore ΦQ(2)∪ΦQ(3) ⊆
Φ?
Q(6). For H ∈ {(30), (2, 18), (3, 9), (3, 12), (6, 6)} we have examples at Table 5 of an elliptic curve E/Q, a

sextic number field K such that E(K)tors = H. Now, by definition, Φ?
Q(6) ⊆ Φ∞(6), so our task to complete the

description of Φ?
Q(6) is to prove that the following torsion structures do no appear for elliptic curve over Q base

change to any sextic number field:

(11), (17), (19), (20), (22), (24), (26), (27), (28), (2, 16), (2, 20), (4, 8).

Indeed,
• H 6= (11), (17), (19), (22) by Proposition 8 (a) and by Proposition 9 (A).
• H 6= (20) by Proposition 8 (k).
• H 6= (24) by Proposition 8 (b), (d), (g) and (p).
• H 6= (26) by Proposition 8 (q) and by Proposition 9 (A).
• H 6= (27) by Proposition 8 (r).
• H 6= (28) by Proposition 8 (s).
• H 6= (2, 16), (4, 8) by Proposition 8 (b).
• H 6= (2, 20) by Proposition 8 (b), (e) and (c).

This concludes the first part of Theorem 2, that is, the determination of Φ?
Q(6). In particular we have obtained

(2) Φ?
Q(6) = ΦQ(2) ∪ ΦQ(3) ∪ {(30), (2, 18), (3, 9), (3, 12), (6, 6)}.

Now part (i) comes from Theorem 10 and (ii), (iii) from Theorem 11. It remains to determine Φ∞Q (6). Najman
[35] has proved that Φ∞Q (2) = ΦQ(2) \ {(15)} and Φ∞Q (3) = ΦQ(3) \ {(21)}. Then by (2) and (i-iii) we only need
to prove that there are infinitely many non Q-isomorphic classes of elliptic curves over Q such that base change
to sextic number field the tosion grows to one of the group in {(2, 18), (3, 9), (3, 12), (6, 6)}. This have been done
in Theorem 12. �

3This family was computed by the first author and Álvaro Lozano-Robledo while working on the question of when can Q(E[n]) =
Q(E[m]). The family At is the 1-parameter family of elliptic curves with the property that Q(At[2]) = Q(At[3]) and both are sextic
extensions of Q.
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Proof of Theorem 3. The groups H ∈ Φ?
Q(6) that do not appear in some Φ?

Q(6, G) for any G ∈ Φ(1), with G ⊆ H,
can be ruled out using Propositions 8 and 9. In Table 3 below, for each group G at the top of a column, we
indicate what groups H (in each row) may appear, and indicate

• with (a)–(t), which part of Proposition 8 is used to prove that the pair (G,H) cannot appear in the
non-CM case,
• with (A)–(E), which part of Proposition 9 is used to prove that the pair (G,H) cannot appear in the
CM case,
• with −, if the case is ruled out because G 6⊆ H,
• with a X, if the case is possible and, in fact, it occurs. There are a few types of check marks in Table 3:

– X (without a subindex) means4 that G = H. .
– Xd for d = 2 or 3 means that the structure H occurs already over a quadratic5 or cubic6 field

respectively. X2,3 means that both cases appear (not necessarily for a single elliptic curve).
– X6 means that H can be achieved over a sextic field but not over an intermediate quadratic or cubic

field, and we have collected examples of curves and sextic fields in Table 5.
�

5. Sporadic torsion over sextic fields

Let d a positive integer and H a finite abelian group. We say that H is a sporadic torsion over degree d if
there are a number field K of degree d and an elliptic curve E/K such that H = E(K)tors satisfying H /∈ Φ∞(d).
Notice that these elliptic curves are in bijection to its j-invariants in J(d). Up to our knowledge only a few
examples are known, excluding the Najman’s elliptic curve cited at the introduction with H = (21) for the case
d = 3. These examples have been found by van Hoeij [19]:

• d = 5: H = (28), (30),
• d = 6: H = (25), (37).

Notice that all the cases correspond to cyclic groups. In this paper we have dealt with the problem to characterize
Φ?
Q(6) = ΦQ(6)∩Φ∞(6). But it is easy to check that (25) and (37) are not subgroups of any group in ΦQ(6). The

former case because by Table 4 in order to gain a point P5 of order 5 in a sextic field we have [Q(P5) : Q] = 1, 2.
Now if P25 is a point of order 25 such that 5P25 = P5 then by [14, Proposition 4.6] we have [Q(P25) : Q(P5)]
divides 25 or 20. Looking at ΦQ(d) for d = 2 and 3 we show that it is not possible the case (25). The last case
is because 37 /∈ RQ(6).

On the other hand it has been pointed out that (4, 12) ∈ ΦQ(6). In particular this shows the first example of
an sporadic non cyclic torsion subgroup (over degree 6). See Remark 1 for more information about this sporadic
torsion.

6. Computations

Let E/Q be an elliptic curve and K/Q a number field. We say that there is torsion growth from Q to K
if E(Q)tors ( E(K)tors. Note that if there is torsion growth over K/Q then the torsion also grows in every
extension of K. We say that the torsion growth in K is primitive if E(K ′)tors ( E(K)tors for any subfield
K ′ ( K. With this definition in mind it is possible to give a more detailed description of how the torsion grows.
Given an elliptic curve E/Q and a positive integer d, we denote by HQ(d,E) the set of pairs (H,K) (up to
isomorphisms) where K/Q is of degree dividing d, H = E(K)tors 6= E(Q)tors and the torsion growth in K is
primitive. Note that we are allowing the possibility of two (or more) of the torsion subgroups H being isomorphic
if the corresponding number fields K are not isomorphic. We call the set HQ(d,E) the torsion configurations of
the elliptic curve E/Q.
When E/Q runs over all elliptic curve we denote by HQ(d) the set of sets HQ(d,E). Finally, for any G ∈ Φ(1) we
define HQ(d,G) as the set of sets HQ(d,E) where E/Q runs over all the elliptic curve such that E(Q)tors = G.
Note that if we denote by hQ(d) the maximum of the cardinality of the sets S when S ∈ HQ(d), then hQ(d) gives

4Note that for any positive integer d, and any elliptic curve E/Q with E(Q)tors = G, there is always an extension K/Q of degree
d such that E(K)tors = E(Q)tors (and, in fact, this is the case for almost all degree d extensions).

5Examples can be found at Table 2 of [17].
6Examples can be found at Table 1 of [16].
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HHH
HHH
G

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (12) (2, 2) (2, 4) (2, 6) (2, 8)

(1) X − − − − − − − − − − − − − −
(2) X3 X − − − − − − − − − − − − −
(3) X2,3 − X − − − − − − − − − − − −
(4) X3 X2 − X − − − − − − − − − − −
(5) X2 − − − X − − − − − − − − − −
(6) X3 X2,3 X3 − − X − − − − − − − − −
(7) X2,3 − − − − − X − − − − − − − −
(8) (b) X2 − X2 − − − X − − − − − − −
(9) X2 − X3 − − − − − X − − − − − −
(10) X6 X2 − − X3 − − − − X − − − − −
(11) (a) − − − − − − − − − − − − − −
(12) X6 X2 X3 X2,3 − X2 − − − − X − − − −
(13) X3 − − − − − − − − − − − − − −
(14) X6 X3 − − − − X3 − − − − − − − −
(15) X6 − X2 − X2 − − − − − − − − − −
(16) (b) X2 − (b) − − − X2 − − − − − − −
(17) (a) − − − − − − − − − − − − − −
(18) X6 X6 (l),(E) − − X3 − − X3 − − − − − −
(19) (a)(A) − − − − − − − − − − − − − −
(20) (k) (k) − (k) (k) − − − − (k) − − − − −
(21) X6 − X3 − − − (o) − − − − − − − −
(22) (a) (a) − − − − − − − − − − − − −
(24) (b) (p) (b) (p) − (p) − (d) − − (g) − − − −
(26) (q),(A) (q),(A) − − − − − − − − − − − − −
(27) (r) − (r) − − − − − (r) − − − − − −
(28) (s) (s) − (s) − − (s) − − − − − − − −
(30) (t) (t) X6 − X6 (t) − − − (t) − − − − −
(2, 2) X3 X2 − − − − − − − − − X − − −
(2, 4) (b),(B) (b),(B) − X2 − − − − − − − X2 X − −
(2, 6) X6 X2 X3 − − X2 − − − − − X2,3 − X −
(2, 8) (b) (b) − X2 − − − X2 − − − X2 X2 − X

(2, 10) X6 X2 − − X6 − − − − X2 − (e) − − −
(2, 12) (b) (b) (b) X2 − (b) − − − − X2 X2 (f) X2 −
(2, 14) X3 X6 − − − − X6 − − − − (h),(C) − − −
(2, 16) (b) (b) − (b) − − − (b) − − − (b) (b) − (b)
(2, 18) X6 X6 (n) − − X6 − − X6 − − (m) − (m) −
(2, 20) (b) (b) − (c) (b) − − − − (b) − (e) (c) − −
(3, 3) X6 − X2 − − − − − − − − − − − −
(3, 6) (i),(D) X6 X6 − − X2 − − − − − − − − −
(3, 9) X6 − X6 − − − − − X6 − − − − − −
(3, 12) (i) X6 (j) X6 − X6 − − − − X6 − − − −
(4, 4) X6 (b) − X2 − − − − − − − (b) X2 − −
(4, 8) (b) (b) − (b) − − − (b) − − − (b) (b) − (b)
(6, 6) X6 X6 X6 − − X6 − − − − − X6 − X6 −

Table 3: The table displays either if the case happens for G = H (X), if
it already occurs over a quadratic field (X2) or over a cubic field (X3), if it
occurs over a sextic but not a quadratic or cubic (X6), if it is impossible
because G 6⊆ H (−) or if it is ruled out by Proposition 8 ((a)-(t)) and
Proposition 9 ((A)-(E))
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the maximum of how many primitive degree d extensions can appear.

The above sets HQ(d) and HQ(d,G), for any G ∈ Φ(1), have been completely determined for d = 2 in [18],
for d = 3 in [16], for d = 5 in [11], for d = 7 and for any d not divisible by a primes less than 11 in [14]. For the
case d = 4, in order to guess what HQ(4) may look like it has been carried out an exhaustive computation [13]
in Magma for all elliptic curves over Q with conductor less than 350.000. Actually7this computations has been
enlarged up to conductor 400.000.

In the same vein as the quartic computations we have carried out similar computations in the sextic case.
Table 6 gives all8 the torsion configurations over sextic fields that we have found, 137 in total. Similarly to the
quartic case in [13], we have not tried to determine that those are all the possible cases. But note that the largest
conductor where we needed to complete the table was 10.816, far from 400.000.

The following table shows what is know about hQ(d):

d 2 3 4 5 6 7 2, 3, 5, 7 - d
hQ(d) 4 3 ≥ 9 1 ≥ 9 1 0

7Filip Najman and the second author has developed [15] a (fast) algorithm that takes as input an elliptic curve defined over Q
and an integer d and returns the torsion configurations of degree d for E, that is, HQ(d,E). At this moment the algorithm has been
run on all elliptic curves Cremona’s database and the torsion growth appear in the LMFDB webpage [30] until degree 7.

8Including the elliptic curves 162d1 and 1296h1 that give sporadic torsion (4, 12) over sextic fields (see Section 5).
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Appendix: Images of Mod p Galois representations associated to elliptic curves over Q

For each possible subgroup GE(p) ⊆ GL2(Z/pZ) for p ∈ RQ(6) = {2, 3, 5, 7, 13}, Table 4 lists in the first and
second column the corresponding labels in Sutherland and Zywina notations, and the following data:

d0: the index of the largest subgroup of GE(p) that fixes a Z/pZ-submodule of rank 1 of E[p]; equivalently,
the degree of the minimal extension L/Q over which E admits a p-isogeny defined over L.

dv: is the index of the stabilizers of v ∈ (Z/pZ)2, v 6= (0, 0), by the action of GE(p) on (Z/pZ)2; equivalently,
the degrees of the extension L/Q over which E has a L-rational point of order p.

d: is the order of GE(p); equivalently, the degree of the minimal extension L/Q for which E[p] ⊆ E(L).
Note that Table 4 is partially extracted from Table 3 of [40]. The difference is that [40, Table 3] only lists the
minimum of dv, which is denoted by d1 therein.

Sutherland Zywina d0 dv d

2Cs G1 1 1 1

2B G2 1 1 , 2 2

2Cn G3 3 3 3

GL2(Z/2Z) 3 3 6

3Cs.1.1 H1,1 1 1 , 2 2

3Cs G1 1 2 , 4 4

3B.1.1 H3,1 1 1 , 6 6

3B.1.2 H3,2 1 2 , 3 6

3Ns G2 2 4 8

3B G3 1 2 , 6 12

3Nn G4 4 8 16

GL2(Z/3Z) 4 8 48

5Cs.1.1 H1,1 1 1 , 4 4

5Cs.1.3 H1,2 1 2 , 4 4

5Cs.4.1 G1 1 2 , 4 , 8 8

5Ns.2.1 G3 2 8 , 16 16

5Cs G2 1 4 16

5B.1.1 H6,1 1 1 , 20 20

5B.1.2 H5,1 1 4 , 5 20

5B.1.4 H6,2 1 2 , 20 20

5B.1.3 H5,2 1 4 , 10 20

5Ns G4 2 8 , 16 32

5B.4.1 G6 1 2 , 20 40

5B.4.2 G5 1 4 , 10 40

5Nn G7 6 24 48

5B G8 1 4 , 20 80

5S4 G9 6 24 96

GL2(Z/5Z) 6 24 480

Sutherland Zywina d0 dv d

7Ns.2.1 H1,1 2 6 , 9 , 18 18

7Ns.3.1 G1 2 12 , 18 36

7B.1.1 H3,1 1 1 , 42 42

7B.1.3 H4,1 1 6 , 7 42

7B.1.2 H5,2 1 3 , 42 42

7B.1.5 H5,1 1 6 , 21 42

7B.1.6 H3,2 1 2 , 21 42

7B.1.4 H4,2 1 3 , 14 42

7Ns G2 2 12 , 36 72

7B.6.1 G3 1 2 , 42 84

7B.6.3 G4 1 6 , 14 84

7B.6.2 G5 1 6 , 42 84

7Nn G6 8 48 96

7B.2.1 H7,2 1 3 , 42 126

7B.2.3 H7,1 1 6 , 21 126

7B G7 1 6 , 42 252

GL2(Z/7Z) 8 48 2016

13S4 G7 6 72 , 96 288

13B.3.1 H5,1 1 3 , 156 468

13B.3.2 H4,1 1 12 , 39 468

13B.3.4 H5,2 1 6 , 156 468

13B.3.7 H4,2 1 12 , 78 468

13B.5.1 G2 1 4 , 156 624

13B.5.2 G1 1 12 , 52 624

13B.5.4 G3 1 12 , 156 624

13B.4.1 G5 1 6 , 156 936

13B.4.2 G4 1 12 , 78 936

13B G6 1 12 , 156 1872

GL2(Z/13Z) 14 168 26208

Table 4. Image groups GE(p) = ρE,p(Gal(Q/Q)), for p ≤ 13, for non-CM elliptic curves E/Q.
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Table 5. Examples of elliptic curves such that G ∈ Φ(1) and H ∈ ΦQ(6, G) but H /∈ ΦQ(d,G), d = 2, 3

G H Sextic K Label of E/Q

(1)

(10) x6 + 2x5 + 2x− 1 50a4

(12) x6 − 3x4 + 2x3 + 9x2 − 12x+ 4 162a2

(14) x6 + 2x5 + 8x4 + 8x3 + 14x2 + 4x+ 4 208d1

(15) x6 − 5 50a4

(18) x6 − 3x5 + 3x3 + 6x2 − 9x+ 3 54a2

(21) x6 + x3 + 1 162b2

(2, 6) x6 − 3x5 + 5x3 − 3x+ 1 27a2

(2, 10) x6 − x5 + 2x4 − 3x3 + 2x2 − x+ 1 121d1

(2, 18) x6 − 3x2 + 6 1728e3

(3, 3) x6 + 3x5 + 4x4 + 3x3 − 5x2 − 6x+ 12 19a2

(3, 9) x6 + 3 54a2

(4, 4) x6 − 2x3 + 9x2 + 6x+ 2 162d2

(4, 12) x6 + 2x3 + 9x2 − 6x+ 2 1296h1

(6, 6) x6 + 3x5 − 5x3 + 3x+ 1 108a2

(2)

(18) x6 + 4x3 + 7 14a3

(2, 14) x6 − x5 + x4 − x3 + x2 − x+ 1 49a1

(2, 18) x6 − x5 + x4 − x3 + x2 − x+ 1 98a1

(3, 6) x6 + 3x5 − 3x4 − 4x3 + 69x2 + 201x+ 181 14a3

(3, 12) x6 + 3 30a3

(6, 6) x6 + 3x5 − 5x3 + 3x+ 1 36a3

(3)

(30) x6 − 2x5 − 2x− 1 50a3

(3, 6) x6 + x5 + 8x4 + 5x3 + 10x2 + 3x+ 3 19a1

(3, 9) x6 − x3 + 1 27a1

(4, 12) x6 + 9x4 − 12x2 + 4 162d1

(6, 6) x6 − 3x5 + 6x4 − 9x3 + 12x2 − 9x+ 3 27a1

(4) (3, 12) x6 − 3x5 + 4x4 − 3x3 − 2x2 + 3x+ 3 90c1

(5)
(30) x6 − 2x5 − 2x− 1 50b1

(2, 10) x6 + x5 + 2x4 + 3x3 + 2x2 + x+ 1 11a1

(6)

(2, 18) x6 − x5 + x4 − x3 + x2 − x+ 1 14a4

(3, 12) x6 − 3x5 + 4x4 − 3x3 − 2x2 + 3x+ 3 30a1

(6, 6) x6 − 3x5 + 6x4 − 9x3 + 12x2 − 9x+ 3 36a1

(7) (2, 14) x6 − 2x5 + 5x4 + 4x3 + 22x2 + 16x+ 16 26b1

(9)
(2, 18) x6 − 3x2 + 6 54b3

(3, 9) x6 + 3 54b3

(12) (3, 12) x6 + 3 90c3

(2, 2) (6, 6) x6 + 3 30a6

(2, 6) (6, 6) x6 + 3x5 + 4x4 + 3x3 − 2x2 − 3x+ 3 30a2
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http://www.lmfdb.org/EllipticCurve/Q/19a2
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http://www.lmfdb.org/EllipticCurve/Q/14a4
http://www.lmfdb.org/EllipticCurve/Q/30a1
http://www.lmfdb.org/EllipticCurve/Q/36a1
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http://www.lmfdb.org/EllipticCurve/Q/54b3
http://www.lmfdb.org/EllipticCurve/Q/54b3
http://www.lmfdb.org/EllipticCurve/Q/90c3
http://www.lmfdb.org/EllipticCurve/Q/30a6
http://www.lmfdb.org/EllipticCurve/Q/30a2
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Table 6. Torsion configurations over sextic fields

G HQ(6, E) Label

(1)

(2, 2) 392b1
(2, 14) 1922c1
(2), (2, 2) 11a2
(2, 2), (2, 14) 1922e1
(4), (4, 4) 648a1
(7), (2, 2) 1922c2
(2), (5), (2, 10) 121d1
(2), (7), (2, 2) 26b2
(2), (7), (2, 14) 10816bk1
(2), (13), (2, 2) 147c1
(3), (6), (6, 6) 108a2
(4), (7), (4, 4) 338b1
(2), (3)2, (2, 6) 484a1
(2), (3), (9), (2, 18) 1728e3
(2), (4)2, (2, 2) 648c1
(2), (5), (10), (2, 2) 75a2
(2), (7), (14), (2, 2) 208d1
(3)2, (2, 2), (2, 6) 196a1
(3)2, (4), (4, 12) 1296h1
(2), (3)2, (2, 6), (3, 3) 225b2
(2), (3)2, (6), (2, 2) 50b3
(2), (3)2, (6), (2, 6) 361b2
(2), (3)2, (7), (2, 6) 5184bd1
(2), (3)2, (9), (2, 6) 361b1
(2), (3)2, (21), (2, 6) 5184u1
(2), (3), (6)2, (2, 2) 300a1
(2), (3), (9), (18), (2, 2) 432e3
(2), (4)2, (7), (2, 2) 338a1
(3)2, (2, 2), (2, 6), (3, 3) 196b2
(3)2, (4), (12), (4, 4) 1296h2
(2), (3)2, (4)2, (2, 6) 1296j1
(2), (3)2, (4), (12), (2, 2) 1296j2
(2), (3)2, (5), (6), (2, 10) 1600q1
(2), (3)2, (5), (10), (2, 6) 1600v3
(2), (3)2, (6), (2, 2), (3, 3) 44a2
(2), (3)2, (6), (2, 2), (3, 9) 486c2
(2), (3)2, (6)2, (2, 2) 175b2
(2), (3)2, (6), (7), (2, 2) 1296e2
(2), (3)2, (6), (9), (2, 2) 175b1
(2), (3)2, (6), (9), (2, 6) 1728e2
(2), (3)2, (6), (21), (2, 2) 1296e1
(2), (3), (9), (18), (2, 2), (3, 9) 54a2
(3)2, (4), (12), (3, 3), (4, 4) 162d2
(2), (3)2, (4)2, (6), (2, 2) 4050g2
(2), (3)2, (4), (12), (2, 2), (3, 3) 162a2
(2), (3)2, (5), (6), (10), (2, 2) 400b1
(2), (3)2, (6)2, (9), (2, 2) 432a1
(2), (3)2, (6), (7), (2, 2), (3, 3) 162b4
(2), (3)2, (6), (7), (21), (2, 2) 7938u3
(2), (3)2, (6), (21), (2, 2), (3, 3) 162c2
(2), (3)2, (9)2, (2, 6), (3, 3) 27a2
(2), (3)2, (6), (7), (21), (2, 2), (3, 3) 162b2
(2), (3)2, (6), (9)2, (2, 2), (3, 3) 19a2
(2), (3)2, (5), (6), (10), (15), (2, 2), (3, 3) 50a4

http://www.lmfdb.org/EllipticCurve/Q/1922c1
http://www.lmfdb.org/EllipticCurve/Q/11a2
http://www.lmfdb.org/EllipticCurve/Q/1922e1
http://www.lmfdb.org/EllipticCurve/Q/648a1
http://www.lmfdb.org/EllipticCurve/Q/1922c2
http://www.lmfdb.org/EllipticCurve/Q/121d1
http://www.lmfdb.org/EllipticCurve/Q/26b2
http://www.lmfdb.org/EllipticCurve/Q/10816bk1
http://www.lmfdb.org/EllipticCurve/Q/147c1
http://www.lmfdb.org/EllipticCurve/Q/108a2
http://www.lmfdb.org/EllipticCurve/Q/338b1
http://www.lmfdb.org/EllipticCurve/Q/484a1
http://www.lmfdb.org/EllipticCurve/Q/1728e3
http://www.lmfdb.org/EllipticCurve/Q/648c1
http://www.lmfdb.org/EllipticCurve/Q/75a2
http://www.lmfdb.org/EllipticCurve/Q/208d1
http://www.lmfdb.org/EllipticCurve/Q/196a1
http://www.lmfdb.org/EllipticCurve/Q/1296h1
http://www.lmfdb.org/EllipticCurve/Q/225b2
http://www.lmfdb.org/EllipticCurve/Q/50b3
http://www.lmfdb.org/EllipticCurve/Q/361b2
http://www.lmfdb.org/EllipticCurve/Q/5184bd1
http://www.lmfdb.org/EllipticCurve/Q/361b1
http://www.lmfdb.org/EllipticCurve/Q/5184b1
http://www.lmfdb.org/EllipticCurve/Q/300a1
http://www.lmfdb.org/EllipticCurve/Q/432e3
http://www.lmfdb.org/EllipticCurve/Q/338a1
http://www.lmfdb.org/EllipticCurve/Q/196b2
http://www.lmfdb.org/EllipticCurve/Q/1296h2
http://www.lmfdb.org/EllipticCurve/Q/1296j1
http://www.lmfdb.org/EllipticCurve/Q/1296j2
http://www.lmfdb.org/EllipticCurve/Q/1600q1
http://www.lmfdb.org/EllipticCurve/Q/1600v3
http://www.lmfdb.org/EllipticCurve/Q/44a2
http://www.lmfdb.org/EllipticCurve/Q/486c2
http://www.lmfdb.org/EllipticCurve/Q/175b2
http://www.lmfdb.org/EllipticCurve/Q/1296e2
http://www.lmfdb.org/EllipticCurve/Q/175b1
http://www.lmfdb.org/EllipticCurve/Q/1728e2
http://www.lmfdb.org/EllipticCurve/Q/1296e1
http://www.lmfdb.org/EllipticCurve/Q/54a2
http://www.lmfdb.org/EllipticCurve/Q/162d2
http://www.lmfdb.org/EllipticCurve/Q/4050g2
http://www.lmfdb.org/EllipticCurve/Q/162a2
http://www.lmfdb.org/EllipticCurve/Q/400b1
http://www.lmfdb.org/EllipticCurve/Q/432a1
http://www.lmfdb.org/EllipticCurve/Q/162b4
http://www.lmfdb.org/EllipticCurve/Q/7938u3
http://www.lmfdb.org/EllipticCurve/Q/162c2
http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/162b2
http://www.lmfdb.org/EllipticCurve/Q/19a2
http://www.lmfdb.org/EllipticCurve/Q/50a4
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G HQ(6, E) Label

(2)

(2, 2) 46a1
(2, 10) 450a3
(2, 2), (2, 14) 49a1
(6), (2, 6) 80b1
(10), (2, 2) 150b3
(14), (2, 2) 49a2
(4)2, (2, 2) 15a5
(4), (8), (2, 2) 24a6
(4), (16), (2, 2) 3150bk1
(6), (2, 2), (2, 6) 80b3
(6), (2, 6), (2, 18) 98a1
(6), (2, 6), (6, 6) 36a3
(6)2, (2, 2) 80b2
(8)2, (2, 2) 2880bd6
(14), (2, 2), (2, 14) 49a3
(4)2, (6), (2, 6) 960o7
(4)2, (12), (2, 6) 450g1
(4), (6), (12), (2, 2) 240b3
(4), (12), (2, 2), (2, 6) 450g3
(6)2, (18), (2, 2) 98a2
(6), (18), (2, 2), (2, 6) 98a5
(4)2, (6), (2, 2), (2, 6) 960o4
(4)2, (6)2, (2, 2) 150c4
(4)2, (6), (12), (2, 2) 240b1
(6)2, (2, 2), (2, 6), (3, 6) 20a3
(4), (6), (12)2, (2, 2), (2, 6), (3, 12) 30a3
(6)2, (18)2, (2, 2), (2, 6), (3, 6) 14a3
(4)2, (6)2, (12)2, (2, 2), (2, 6), (3, 6) 30a7

(3)

(2, 6), (3, 3) 196b1
(6), (6, 6) 108a1
(6), (2, 6), (3, 3) 44a1
(12), (3, 3), (4, 12) 162d1
(6), (2, 6), (3, 3), (3, 6) 19a1
(6), (3, 3), (3, 9), (6, 6) 27a1
(6), (9), (2, 6), (3, 9) 486f1
(6), (21), (2, 6), (3, 3) 162b1
(6), (2, 6), (3, 3), (3, 6), (3, 9) 54a1
(6), (9), (3, 3), (3, 9), (6, 6) 27a3
(6), (9)2, (2, 6), (3, 3) 19a3
(6), (12)2, (2, 6), (3, 3) 162a1
(6), (15), (30), (2, 6), (3, 3) 50a3
(6), (9), (2, 6), (3, 3), (3, 6), (3, 9) 54b1

G HQ(6, E) Label

(4)

(2, 4) 17a1
(2, 8) 192c6
(4, 4) 40a4
(12), (2, 12) 150c3
(8)2, (2, 4) 15a7
(8)2, (2, 8) 240d6
(12), (2, 4), (2, 12) 150c1
(12)2, (2, 4) 720j5
(12)2, (2, 4), (2, 12), (3, 12) 90c1

(5)
(10), (2, 10) 11a1
(10), (15)2, (30), (2, 10) 50b1

(6)

(2, 6), (3, 6) 14a1
(2, 6), (6, 6) 36a1
(12)2, (2, 6), (3, 6) 30a4
(12)2, (2, 6), (3, 12) 30a1
(18)2, (2, 6), (2, 18), (3, 6) 14a4

(7) (14), (2, 14) 26b1

(8)
(2, 8) 15a4
(16)2, (2, 8) 210e1

(9) (18), (2, 18), (3, 9) 54b3

(10) (2, 10) 66c1

(12) (2, 12), (3, 12) 90c3

(2, 2)

(2, 4) 33a1
(2, 8) 63a2
(2, 4)2 17a2
(2, 4), (2, 8) 75b3
(2, 6)2 240b2
(2, 6), (2, 12) 960o6
(2, 4)3 15a2
(2, 4)2, (2, 8) 510e5
(2, 4), (2, 6)2 150c2
(2, 4), (2, 6), (2, 12) 960o2
(2, 6)2, (6, 6) 30a6
(2, 4), (2, 6)2, (2, 12), (6, 6) 90c2

(2, 4)

(2, 8) 15a3
(4, 4) 195a3
(2, 8)2 1230f2
(2, 8), (4, 4) 15a1
(2, 8)2, (4, 4) 210e3

(2, 6)
(6, 6) 30a2
(2, 12), (6, 6) 90c6

http://www.lmfdb.org/EllipticCurve/Q/46a1
http://www.lmfdb.org/EllipticCurve/Q/450a3
http://www.lmfdb.org/EllipticCurve/Q/49a1
http://www.lmfdb.org/EllipticCurve/Q/80b1
http://www.lmfdb.org/EllipticCurve/Q/150b3
http://www.lmfdb.org/EllipticCurve/Q/49a2
http://www.lmfdb.org/EllipticCurve/Q/15a5
http://www.lmfdb.org/EllipticCurve/Q/24a6
http://www.lmfdb.org/EllipticCurve/Q/3150bk1
http://www.lmfdb.org/EllipticCurve/Q/80b3
http://www.lmfdb.org/EllipticCurve/Q/98a1
http://www.lmfdb.org/EllipticCurve/Q/36a3
http://www.lmfdb.org/EllipticCurve/Q/80b2
http://www.lmfdb.org/EllipticCurve/Q/2880bd6
http://www.lmfdb.org/EllipticCurve/Q/49a3
http://www.lmfdb.org/EllipticCurve/Q/960o7
http://www.lmfdb.org/EllipticCurve/Q/450g1
http://www.lmfdb.org/EllipticCurve/Q/240b3
http://www.lmfdb.org/EllipticCurve/Q/450g3
http://www.lmfdb.org/EllipticCurve/Q/98a2
http://www.lmfdb.org/EllipticCurve/Q/98a5
http://www.lmfdb.org/EllipticCurve/Q/960o4
http://www.lmfdb.org/EllipticCurve/Q/150c4
http://www.lmfdb.org/EllipticCurve/Q/240b1
http://www.lmfdb.org/EllipticCurve/Q/20a3
http://www.lmfdb.org/EllipticCurve/Q/30a3
http://www.lmfdb.org/EllipticCurve/Q/14a3
http://www.lmfdb.org/EllipticCurve/Q/30a7
http://www.lmfdb.org/EllipticCurve/Q/196b1
http://www.lmfdb.org/EllipticCurve/Q/108a1
http://www.lmfdb.org/EllipticCurve/Q/44a1
http://www.lmfdb.org/EllipticCurve/Q/162d1
http://www.lmfdb.org/EllipticCurve/Q/19a1
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