/////////////////////////////////////////////////////////////////////////// // "Growth of torsion groups of elliptic curves upon base changes" // Enrique González-Jiménez & Filip Najman /////////////////////////////////////////////////////////////////////////// // 13/10/2016 - Magma 2.21 // Magma script related to Theorem7.7 // Elliptic curve E_t (see Zywina's Theorem 1.5 (iv)) K:=FunctionField(Rationals()); Kx:=PolynomialRing(K); A:=-27*(t^2-t+1)*(t^6+229*t^5+270*t^4-1695*t^3+1430*t^2-235*t+1); B:=54*(t^12-522*t^11-8955*t^10+37950*t^9-70998*t^8+131562*t^7-253239*t^6+316290*t^5-218058*t^4+80090*t^3-14631*t^2+510*t+1); H41_7:=[A,B]; Et:=EllipticCurve(H41_7); /* OUTPUT: Generically the torsion subgroup of Et is trivial >TorsionSubgroup(Et); Abelian Group of order 1 Mapping from: Abelian Group of order 1 to CrvEll: Et given by a rule [no inverse] */ // 7-division polynomial of Et P7:=DivisionPolynomial(Et,7); // Factorization of the 7-division polynomial of Et L7:=Factorization(P7); /* OUTPUT: The degree of the factors of the 7-division polynomial of Et > [Degree(p[1]) : p in L7]; [ 3, 7, 7, 7 ] */ // For any degree 7 factor of the 7-division polynomial we build an extension of degree 7 over Q(t) K2:=quo; K3:=quo; K4:=quo; // We check that for the above degree 7 extensions of Q(t) we have a degree 7 point in Et. for a in [*a2,a3,a4*] do boo:=IsSquare(a^3+A*a+B); boo; end for; /* true true true */ // Now we check that, in fact, the three degree 7 extensions of Q(t) are the same: L73_K2:=Factorization(Polynomial(K2,L7[3][1])); L74_K2:=Factorization(Polynomial(K2,L7[4][1])); /* > [Degree(p[1]) : p in L73_K2]; [ 1, 6 ] > [Degree(p[1]) : p in L74_K2]; [ 1, 6 ] */