/////////////////////////////////////////////////////////////////////////// // "Growth of torsion groups of elliptic curves upon base changes" // Enrique González-Jiménez & Filip Najman /////////////////////////////////////////////////////////////////////////// // 13/10/2016 - Magma 2.21 // Magma script related to Theorem7.1 Z49:=Integers(49); Z7:=Integers(7); Sub:=[H`subgroup: H in Subgroups(GL(2,Z49))]; // Let G be a subgroup of GL(2,7) which acts on the left: M*v (M in G) // then we need to transpose to work in Magma // (since Magma the subgroups of GL(2,7) acts on the right: v*M (M in G) // 7B.1.1 is generated by {[1,0,0,3], [1,1,0,1]} in GL(2,7) G7B11:=sub; // Transpose the generators on Sutherland/Zywina // 7B.1.3 is generated by {[1,0,0,3], [1,1,0,1]} in GL(2,7) G7B13:=sub; // Transpose the generators on Sutherland/Zywina // Imm7B11 is the set of subgroups GG of GL(2,Z/49Z) (up to conjugation) such that GG = G (mod 7), where G=7B.1.1 Im_rho:=G7B11; Imm7B11:=[H`subgroup: H in Subgroups(GL(2,Z49)) | IsConjugate(GL(2,Z7),sub,Im_rho)]; // Imm7B13 is the set of subgroups GG of GL(2,Z/49Z) (up to conjugacy) such that GG = G (mod 7), where G=7B.1.3 Im_rho:=G7B13; Imm7B13:=[H`subgroup: H in Subgroups(GL(2,Z49)) | IsConjugate(GL(2,Z7),sub,Im_rho)]; // For any subgroup GG in Imm7B11 we compute: // for any v in (Z/49Z)^2 of order 49 // if the orbit G.v is of length 7, // and in that case we determine the Name of the Galois group of the corresponding number field of degree 7. G49_7B11:={}; for GG in Imm7B11 do V49:={ v : v in RSpace(GG) | not IsZero(v) and not &and[IsDivisibleBy(Eltseq(v)[1],7),IsDivisibleBy(Eltseq(v)[2],7)]}; names:={GroupName(quo) : v in V49 | #Orbit(GG,v) eq 7}; G49_7B11:=G49_7B11 join names; end for; /* OUTPUT: For any subgroups GG in Imm7B111 and for any v in (Z/49Z)^2 of order 49 such that |G.v|=7 we obtain that the corresponding number field of degree 7 is cyclic: > G49_7B11; { C7 } */ // For any subgroup GG in Imm7B13 we compute: // for any v in (Z/49Z)^2 of order 49 // if the orbit G.v is of length 7, // and in that case we compute the Name of the Galois group of the corresponding number field of degree 7. G49_7B13:={}; for GG in Imm7B13 do V49:={ v : v in RSpace(GG) | not IsZero(v) and not &and[IsDivisibleBy(Eltseq(v)[1],7),IsDivisibleBy(Eltseq(v)[2],7)]}; names:={GroupName(quo) : v in V49 | #Orbit(GG,v) eq 7}; G49_7B13:=G49_7B13 join names; end for; /* OUTPUT: For any subgroups GG in Imm7B113 and for any v in (Z/49Z)^2 of order 49 we obtain |G.v| \ne 7: > G49_7B13; {} */