/////////////////////////////////////////////////////////////////////////// // "Growth of torsion groups of elliptic curves upon base changes" // Enrique González-Jiménez & Filip Najman /////////////////////////////////////////////////////////////////////////// // 13/10/2016 - Magma 2.21 // Magma script related to Theorem7.1 // It is known that there are only finitely many j-invariants // of elliptic curves E/Q with a 14-isogeny or a 21-isogeny // In Table 4 from Lozano-Robledo's paper we checked the following: // * If E has a 14-isogeny, then j(E) in {-3375,16581375} // and the Cremona labels of the representatives in these // classes of smallest conductor are [49a1,49a3] and [49a2,49a4] resp. // * If E has a 21-isogeny, then j(E) in {-140625/8, 3375/2, -1159088625/2097152, -189613868625/128} // and the Cremona labels of the representatives in these // classes of smallest conductor are [162b1,162c2],[162b2,162c1],[162b3,162c4] and [162b4,162c3] resp. // // Now, in the LMFDB database (www.lmfdb.org) we obtain that // G_E(7) of the above elliptic curves belongs to // 7B.1.5, 7B.1.2, 7B.2.1, 7B.2.3, 7B // Since in all the above cases we have j(E)\ne 0, // we have that if EE is an elliptic curve with a 14-isogeny or a 21-isogeny // then \pm G_E(7)=\pm G_EE(7) load "subgroups.m"; G1:=GL2SubgroupFromLabel("7B.1.5"); G2:=GL2SubgroupFromLabel("7B.1.2"); G3:=GL2SubgroupFromLabel("7B.2.1"); G4:=GL2SubgroupFromLabel("7B.2.3"); G5:=GL2SubgroupFromLabel("7B"); G6:=GL2SubgroupFromLabel("7B.1.3"); for G in [G1,G2,G3,G4,G5,G6] do GG:=sub; printf "%o - %o\n",GL2SubgroupLabel(G), GL2SubgroupLabel(GG); end for; /* OUT: We check that it is not possible that an elliptic curve E/Q with a 14-isogeny or a 21-isogeny has G_E(7) = 7B.1.3 7B.1.5 - 7B.6.2 7B.1.2 - 7B.6.2 7B.2.1 - 7B 7B.2.3 - 7B 7B - 7B 7B.1.3 - 7B.6.3 */