/////////////////////////////////////////////////////////////////////////// // "Growth of torsion groups of elliptic curves upon base changes" // Enrique González-Jiménez & Filip Najman /////////////////////////////////////////////////////////////////////////// // 13/10/2016 - Magma 2.21 // Magma script related to Lemma 8.16 // If C2xC2 subset E(Q) then G_E(2) = 2Cs // Suppose G_E(3) = 3Ns A2:=AffineSpace(Rationals(),2); X:=Curve(A2,s^3*t^2*(t+1)^2-256*(t^2+t+1)^3); C:=ProjectiveClosure(X); /* C is a singular curve and the point (0:1:0) is the unique singular point IsSingular(C); >true > SingularPoints(C); {@ (0 : 1 : 0) @} */ Genus(C); // 1 Pts:=Points(C:Bound:=1000); //{@ (1 : 12 : 1), (-1/2 : 12 : 1), (-2 : 12 : 1), (0 : 1 : 0), (1 : 0 : 0) @} EE,map1:=EllipticCurve(C,C![1,12]); E,map2:=MinimalModel(EE); // Elliptic Curve defined by y^2 = x^3 + 1 over Rational Field AbelianInvariants(MordellWeilGroup(E)); // Abelian Group isomorphic to Z/6 // If E has a 4-isogeny over Q // and suppose G_E(3) = 3Ns E:=EllipticCurve([0,0,16,0,0]); Invariants(MordellWeilGroup(E)); g,m:=TorsionSubgroup(E); /* >[m(a):a in g]; [ (0 : 1 : 0), (8 : -32 : 1), (0 : -16 : 1), (-4 : -8 : 1), (0 : 0 : 1), (8 : 16 */ for a in g do Pt:=m(a); if Order(Pt) ne 1 then h:=Pt[2]/Pt[3]; if not h in {0,-16} then j:=(h^2+16*h+16)^3/(h*(h+16)); print h,j,HasComplexMultiplication(EllipticCurveFromjInvariant(j)); end if; end if; end for; /* OUTPUT: -32 287496 true -16 -8 1728 true -4 16 287496 true -16 */ //computation that the torsion group cannot be C_48 in a dihedral quartic field. /* // Let E/Q an elliptic curve, K a dihedral quartic field and F the quadratic field of K. // Suppose: // (1) E(Q)[2^infty]=Z/2Z // (2) Z/16Z < E(K)[2^infty] // Then Z/8Z < E(K)[2^infty] load "2primary_Ss.txt"; > {r[3][1,3] : r in RZB | r[3][1,1] eq 1 and r[3][1,2] ne 1 and r[3][1,3] ne 1 and r[3][1,4] eq 4}; { 2 } */