/////////////////////////////////////////////////////////////////////////// // "Growth of torsion groups of elliptic curves upon base changes" // Enrique González-Jiménez & Filip Najman /////////////////////////////////////////////////////////////////////////// // 13/10/2016 - Magma 2.21 // Magma script related to Lemma 8.16 load "2primary_Ss.txt"; function aux_Id(m,s) // return true if Matrix m (mod 2^s) is congruent to the identity if [Integers(2^s)!t : t in Eltseq(m)] eq [1,0,0,1] then return true; else return false; end if; end function; function Cuenta(G,N,s,d) // Given a group G that is the 2-adic image of an elliptic curve E over Q, // and three integers N>0, s>=0, d>0 // the function determines the (name of the) Galois Groups of the fields K such that E(K)[2]=Z/2^sZ x Z/2^NZ // and [K:Q] divides d. M:=Characteristic(BaseRing(G)); GG:=sub; Odds:=[[i,j] : i in [0..2^N-1], j in [0..2^N-1] | IsOdd(i) or IsOdd(j)]; L:={}; V := RSpace(GG); S:=[]; for v in Odds do Hv := Stabiliser(GG,V!v); Hvmod2s:=[m : m in Hv | aux_Id(m,s)]; HHv:=sub; ord_s:=#Hvmod2s; hv:=Integers()!(Order(GG)/ord_s); if IsDivisibleBy(d,hv) then // if hv eq d then Kv:=quo; Gal:=GroupName(Kv); L:=L join {Gal}; end if; end for; return L; end function; // Has C2 over Q and the torsion grows to C2xC8 over a quartic number field // s=1 // N=3 // For each of the 2-adic images of an elliptic curve E over Q (from the Rouse and Zurieck-Brown database) // such that E(Q)[2]=C2 and E(K)[2^\infty]=C2xC8 where [K:Q] divides 4 we determine the Galois group of K over Q d:=4; LC:={}; for rzb in RZB do T:=rzb[3]; if (T[1][1] eq 1) and (T[1][2] ne 1) and (T[2][1] ne 1) then // E(Q)[2]=C2 if IsDivisibleBy(4,T[2][3]) then // C2xC8 defined over a quartic number field G:=sub; CC:=Cuenta(G,3,1,d); LC:=LC join CC; end if; end if; end for; LC; /* OUTPUT: Let E/Q an elliptic curve such that E(Q)[2]=C2. The Galois group of the fields K such that C2xC8 \subset E(K) and [K:Q] divides 4 are: { C2^2 } */ // C4 subset E(Q), E(Q)[2] cyclic and the torsion grows to C2xC8 over a quartic number field // s=1 // N=3 // For each of the 2-adic images of an elliptic curve E over Q (from the Rouse and Zurieck-Brown database) // such that C4 subset E(Q) and E(K)[2]=C2xC8 where [K:Q] divides 4 we determine the Galois group of K d:=4; LC:={}; for rzb in RZB do T:=rzb[3]; if (T[1][2] eq 1) and (T[2][1] ne 1) then // C4 subset E(Q)[2^\infty] and E(Q)[2] cyclic if IsDivisibleBy(4,T[2][3]) then // C2xC8 defined over a quartic number field G:=sub; CC:=Cuenta(G,3,1,d); LC:=LC join CC; end if; end if; end for; LC; /* OUTPUT: Let E/Q an elliptic curve such that C4 subset E(Q)[2^\infty] and E(Q)[2] cyclic The Galois group of the fields K such that C2xC8 \subset E(K) and [K:Q] divides 4 are: { C4, C2^2, C2 } */ // C2xC2 subset E(Q) and the torsion grows to C2xC8 over quartic number field // s=1 // N=3 // For each of the 2-adic images of an elliptic curve E over Q (from the Rouse and Zurieck-Brown database) // such that C2xC2 subset E(Q) and E(K)[2]=C2xC8 where [K:Q] divides 4 we determine the Galois group of K // and in the case that this Galois group is D4 we check that [Q(E[4]):Q]=4 d:=4; LC:={}; LC4xC4:={}; for rzb in RZB do T:=rzb[3]; if (T[2][1] eq 1) then // E(Q)[2]=E[2] if IsDivisibleBy(4,T[2][3]) then // C2xC8 defined over a quartic number field G:=sub; CC:=Cuenta(G,3,1,d); if "D4" in CC then LC4xC4:=LC4xC4 join {T[3][1]}; // Add [Q(E[4]):Q] to the set LC4xC4 end if; LC:=LC join CC; end if; end if; end for; LC; LC4xC4; /* OUTPUT Let E/Q be an elliptic curve such that E(Q)[2]=E[2]. The Galois group of the fields K such that C2xC8 \subset E(K) and [K:Q] divides 4 are: > LC; { C1, C2^2, C2, D4 } In the case D4 we have that the degree of the number fields Q(E[4]) are: > LC4xC4; { 4 } */