Genus 2 curves with modular jacobians

Label

$ \,\,\,C : y^2 \,\,\,=\,\,\, P(x)$

$ {23A}$

$ \,\,\,y^2 \,=x^6 - 8x^5 + 2x^4 + 2x^3 - 11x^2 + 10x - 7$

$ {29A}$

$ \,\,\,y^2 \,=x^6 - 4x^5 - 12x^4 + 2x^3 + 8x^2 + 8x - 7$

$ {31A}$

$ \,\,\,y^2 \,= x^6 - 8x^5 + 6x^4 + 18x^3 - 11x^2 - 14x -3$

$ {63B}$

$ \,\,\,y^2 \,=-3x^6 + 162x^3 + 81$

$ {65B}$

$ \,\,\,y^2 \,=-x^6 - 4x^5 + 3x^4 + 28x^3 - 7x^2 - 62x + 42$

$ {65C}$

$ \,\,\,y^2 \,=-15x^6 + 36x^4 - 30x^3 + 72x^2-39$

$ {67B}$

$ \,\,\,y^2 \,=x^6 + 2x^5 + x^4 - 2x^3 + 2x^2 - 4x + 1$

$ {73B}$

$ \,\,\,y^2 \,=x^6 - 4x^5 + 2x^4 + 6x^3 + x^2 + 2x + 1 $

$ {87A}$

$ \,\,\,y^2 \,=x^6 - 2x^4 - 6x^3 - 11x^2 - 6x - 3$

$ {93A}$

$ \,\,\,y^2 \,=x^6 + 2x^4 - 6x^3 + 5x^2 + 6x + 1$

$ {103A}$

$ \,\,\,y^2 \,=x^6 + 2x^4 + 2x^3 + 5x^2 + 6x + 1$

$ {107A}$

$ \,\,\,y^2 \,=x^6 + 2x^5 + 5x^4 + 2x^3 - 2x^2 - 4x - 3$

$ {115B}$

$ \,\,\,y^2 \,=x^6 + 2x^4 + 10x^3 + 5x^2 + 6x + 1$

$ {117B}$

$ \,\,\,y^2 \,=x^6 - 10x^3 - 27$

$ {117C}$

$ \,\,\,y^2 \,=-3x^6 - 12x^4 - 18x^3 - 48x^2-36x - 27$

$ {125A}$

$ \,\,\,y^2 \,=x^6 + 2x^5 + 5x^4 + 10x^3 + 10x^2 + 8x + 1$

$ {125B}$

$ \,\,\,y^2 \,=5x^6 - 10x^5 + 25x^4 - 50x^3 + 50x^2 - 40x + 5$

$ {133A}$

$ \,\,\,y^2 \,=x^6 - 2x^5 + 5x^4 - 6x^3 + 10x^2 - 8x + 1$

$ {133B}$

$ \,\,\,y^2 \,=-3x^6 - 22x^5 - 35x^4 + 50x^3 + 74x^2 - 100x + 29$

$ {135D}$

$ \,\,\,y^2 \,=x^6 + 6x^4 - 10x^3 + 9x^2-30x - 11$

$ {147D}$

$ \,\,\,y^2 \,=x^6 - 4x^4 + 2x^3 + 8x^2 - 12x + 9 $

$ {161B}$

$ \,\,\,y^2 \,=x^6 + 6x^5 + 17x^4 + 22x^3 + 26x^2 + 12x + 1$

$ {167A}$

$ \,\,\,y^2 \,=x^6 - 4x^5 + 2x^4 - 2x^3 - 3x^2 + 2x - 3$

$ {175E}$

$ \,\,\,y^2 \,=x^6 + 2x^5 - 3x^4 + 6x^3 - 14x^2 + 8x - 3$

$ {177A}$

$ \,\,\,y^2 \,=x^6 + 2x^4 - 6x^3 + 5x^2 - 6x + 1$

$ {177B}$

$ \,\,\,y^2 \,=-15x^6 - 120x^5 - 530x^4 - 710x^3 - 515x^2-30x + 45$

$ {188B}$

$ \,\,\,y^2 \,=x^5 - x^4 + x^3 + x^2 - 2x + 1$

$ {189E}$

$ \,\,\,y^2 \,=x^6 - 2x^3 - 27 $

$ {191A}$

$ \,\,\,y^2 \,=x^6 + 2x^4 + 2x^3 + 5x^2 - 6x + 1 $

$ {205D}$

$ \,\,\,y^2 \,=x^6 + 2x^4 + 10x^3 + 5x^2 - 6x + 1 $

$ {209B}$

$ \,\,\,y^2 \,=x^6 - 4x^5 + 8x^4 - 8x^3 + 8x^2 + 4x + 4$

$ {213B}$

$ \,\,\,y^2 \,=x^6 + 2x^4 + 2x^3 - 7x^2 + 6x - 3$

$ {221C}$

$ \,\,\,y^2 \,=x^6 - 2x^5 + x^4 + 6x^3 + 2x^2 + 4x + 1$

$ {224C}$

$ \,\,\,y^2 \,=-2x^6 - 8x^5 - 34x^4 - 48x^3 - 118x^2 + 56x + 154 $

$ {224D}$

$ \,\,\,y^2 \,=2x^6 - 8x^5 + 34x^4 - 48x^3 + 118x^2 + 56x - 154 $

$ {243C}$

$ \,\,\,y^2 \,=x^6 + 6x^3 - 27$

$ {250D}$

$ \,\,\,y^2 \,=\,20\,x^6 - 140\,x^5 + 325\,x^4 +1050\,x^3 + 425\,x^2 + 160\,x + 80$

$ {256E}$

$ \,\,\,y^2 \,=\,2\,x^5 - 128\,x $

$ {261A}$

$ \,\,\,y^2 \,=x^6 - 6x^4 + 10x^3 + 21x^2-30x + 9$

$ {261B}$

$ \,\,\,y^2 \,=-3x^6 + 18x^4 + 30x^3 - 63x^2 - 90x - 27$

$ {261D}$

$ \,\,\,y^2 \,=-3x^6 + 6x^4 - 18x^3 + 33x^2 - 18x + 9$

$ {262C}$

$ \,\,\,y^2 \,=-8x^5 + 56x^4 - 82x^3 - 312x^2 - 264x - 64$

$ {266B}$

$ \,\,\,y^2 \,=\,8\,x^6 + 16\,x^5 + 13\,x^4 + 6\,x^3 - 19\,x^2 - 8\,x - 16 $

$ {268C}$

$ \,\,\,y^2 \,=x^6 - 2x^5 + x^4 - 4x^3 + 2x^2 + 4x + 1$

$ {275G}$

$ \,\,\,y^2 \,=-3x^6 - 2x^5 + x^4 - 14x^3 + 2x^2 - 8x + 1$

$ {279A}$

$ \,\,\,y^2 \,=\,-3\,x^6 - 6\,x^4 - 18\,x^3 - 15\,x^2 + 18\,x - 3 $

$ {279B}$

$ \,\,\,y^2 \,=\,-3\,x^6 + 6\,x^5 - 3\,x^4 - 6\,x^3 + 18\,x^2 - 12\,x + 9$

$ {287A}$

$ \,\,\,y^2 \,=x^6 + 2x^5 - 3x^4 - 6x^3 - 10x^2 - 4x - 3$

$ {292A}$

$ \,\,\,y^2 \,=-x^6 - 2x^5 - 4x^4 - 4x^3 - 3x^2 - 2x + 1$

$ {297E}$

$ \,\,\,y^2 \,=\,x^6 - 12\,x^4 - 8\,x^3 + 12\,x^2 - 12\,x + 4$

$ {297F}$

$ \,\,\,y^2 \,=\,-3\,x^6 + 36\,x^4 - 24\,x^3 - 36\,x^2 - 36\,x - 12 $

$ {299A}$

$ \,\,\,y^2 \,=-3x^6 - 10x^5 - 7x^4 + 6x^3 + 6x^2 - 4x + 1$

$ {325H}$

$ \,\,\,y^2 \,= \,-75\,x^6 + 180\,x^4 + 150\,x^3 + 360\,x^2 - 195 $

$ {335B}$

$ \,\,\,y^2 \,=x^6 - 4x^5 - 48x^2 - 20x - 4$

$ {345G}$

$ \,\,\,y^2 \,=\,x^6 - 12\,x^5 + 32\,x^4 + 24\,x^3 + 8\,x^2 - 12\,x + 4$

$ {351A}$

$ \,\,\,y^2 \,=x^6 - 6x^4 + 18x^3 + 9x^2 - 18x + 5$

$ {351C}$

$ \,\,\,y^2 \,=\,-3\,x^6 + 18\,x^4 + 54\,x^3 - 27\,x^2 - 54\, x- 15$

$ {351D}$

$ \,\,\,y^2 \,=\,21\,x^6 - 210\,x^5 + 525\,x^4 - 602\,x^3 + 714\,x^2 + 336\,x + 665 $

$ {357E}$

$ \,\,\,y^2 \,=x^6 + 8x^4 - 8x^3 + 20x^2 - 12x + 12$

$ {375C}$

$ \,\,\,y^2 \,=\,105\,x^6 + 240\,x^5 + 550\,x^4 + 450\,x^3 + 325\,x^2 + 90\,x - 155 $

$ {376A}$

$ \,\,\,y^2 \,=\,-x^5 - x^4 + 3\,x^3 + 3\,x^2 - 4\,x + 1$

$ {376B}$

$ \,\,\,y^2 \,=x^5 - x^3 + 2x^2 - 2x + 1$

$ {380D}$

$ \,\,\,y^2 \,=x^5 - 7x^3 - 4x^2 + 5x + 5$

$ {387F}$

$ \,\,\,y^2 \,=-12x^6 + 162x^3 + 324$

$ {389B}$

$ \,\,\,y^2 \,=x^6 + 10x^5 + 23x^4 - 20x^3 - 45x^2 + 46x - 11$

$ {391A}$

$ \,\,\,y^2 \,=x^6 + 10x^4 - 6x^3 - 11x^2 + 18x - 7$

$ {424A}$

$ \,\,\,y^2 \,=x^6 - 2x^5 + 6x^4 - 8x^3 + 10x^2 - 8x + 5 $

$ {440E}$

$ \,\,\,y^2 \,=x^5 + 2x^3 - 11x^2 - 8x - 24$

$ {440G}$

$ \,\,\,y^2 \,=x^5 - 2x^3 - 7x^2 - 8x + 8$

$ {441I}$

$ \,\,\,y^2 \,=\,-3\,x^6 + 12\,x^4 + 6\,x^3 - 24\,x^2 - 36\,x - 27$

$ {464I}$

$ \,\,\,y^2 \,=-x^6 - 2x^5 - 7x^4 - 6x^3 - 13x^2 - 4x - 8$

$ {476B}$

$ \,\,\,y^2 \,=x^5 + 2x^4 + 3x^3 + 6x^2 + 4x + 1 $

$ {476D}$

$ \,\,\,y^2 \,=x^5 - 2x^4 + 3x^3 - 6x^2 - 7$

$ {483C}$

$ \,\,\,y^2 \,=\,x^6 + 12\,x^5 + 26\,x^4 - 34\,x^3 - 67\,x^2 + 90\,x - 27$

$ {488A}$

$ \,\,\,y^2 \,=-3x^6 + 18x^5 - 27x^4 - 12x^3 - 27x^2-36x - 24$

 




This table appears in