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Torsion growth over cubic fields of rational elliptic curves
with complex multiplication

By ENRIQUE GONZÁLEZ-JIMÉNEZ (Madrid)

Abstract. This article is a contribution to the project of classifying the torsion

growth of elliptic curves upon base-change. In this article, we treat the case of elliptic

curves defined over the rationals with complex multiplication. For this particular case,

we give a description of the possible torsion growth over cubic fields, and a completely

explicit description of this growth in terms of some invariants attached to a given elliptic

curve.

1. Introduction

The arithmetic of elliptic curves is one of the most fascinating areas of arith-

metic geometry. Let E be an elliptic curve defined over a number field K, then

the Mordell–Weil Theorem asserts that the set of K-rational points on E, de-

noted by E(K), forms a finitely generated abelian group. The subgroup of points

of finite order, denoted by E(K)tors, is called the torsion subgroup, and it is

well known that is isomorphic to Cn × Cm for some positive integers n,m, where

Cn = Z/nZ denotes the cyclic group of order n. Over the past several years, many

people have been actively studying torsion subgroups of elliptic curves. Thanks to

Merel [25], it is known that given a positive integer d, the set Φ(d) of possible

groups (up to isomorphism) that can appear as the torsion subgroup E(K)tors,

where K runs through all number fields K of degree d and E runs through all
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elliptic curves over K, is finite. Only the cases d = 1 and d = 2 are known

(by [24]; and [22]–[23], respectively). A few years ago, Derickx, Etropolski,

van Hoeij, Morrow and Zureick-Brown announced the solution of the case

d = 3, but the results are still in preparation [8]. For d > 3, the problem remains

open.

This paper focuses on a particular approach concerning torsion growth:

we are interested in studying how the torsion subgroup of an elliptic curve de-

fined over Q changes when we consider the elliptic curve over a number field of

degree d. We denote the set of possible groups, up to isomorphism, that can ap-

pear as the torsion subgroup over a number field of degree d, of an elliptic curve

defined over Q (resp. such that E(Q)tors ' G) by ΦQ(d) (resp. ΦQ(d,G), where

G ∈ Φ(1) is fixed). Thanks to Merel’s theorem on the boundedness of the torsion

of elliptic curves, we know that for a given integer d, the set ΦQ(d) is finite.

Note that if E is an elliptic curve defined over Q, and K a number field such

that the torsion of E grows from Q to K, then of course the torsion of E also

grows from Q to any extension of K. We say that the torsion growth over K is

primitive if E(K ′)tors ( E(K)tors for any subfield K ′ ( K.

Given an elliptic curve E defined over Q and a positive integer d, there is an

obvious algorithm1 that computes all the pairs (K,H) (up to isomorphism), where

K is a number field of degree dividing d, E has primitive torsion growth over K,

and E(K)tors ' H. We denote the list formed by the groups H in the above

computation by HQ(d,E). Note that we are allowing the possibility of two (or

more) of the torsion subgroups H being isomorphic if the corresponding number

fields K are not isomorphic. Furthermore, the set HQ(d,E) is finite. We call the

setHQ(d,E) the set of torsion configurations of degree d of the elliptic curve E/Q.

We letHQ(d) (resp. HQ(d,G), where G ∈ Φ(1) is fixed) denote the set ofHQ(d,E)

as E runs over all elliptic curves defined over Q (resp. such that E(Q)tors ' G).

Let hQ(d) denote the maximum cardinality of S when S ∈ HQ(d). Then hQ(d)

is the maximum number of field extensions of degree dividing d where there is

primitive torsion growth.

1By Merel’s theorem, there exists an effective bound B(d) such that #E(K)tors ≤ B(d). So to

determine the number fields of degree d′ dividing d where torsion grows, one checks whether

there are any irreducible factor of degree d′ of the pn-division polynomial of E where pn ≤ Bd.

We point out here that in practice this algorithm would not be very useful. For this reason,

we have developed a fast algorithm usable in practice [17].
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The sets ΦQ(d), ΦQ(d,G) and HQ(d,G), for any G ∈ Φ(1), have been completely

determined for d = 2, 3, 5, 7 and for any positive integer d whose prime divisors

are greater than 7 (cf. [27], [19], [20], [18], [11] and [16]). The set ΦQ(4) is also

known (see [4] and [16]), and the set ΦQ(6) has been studied in [7] and [21]. The

other sets have been treated for d = 4 in [15], and d = 6 in [7].

We define ΦCM(d), ΦCM
Q (d), ΦCM

Q (d,G), HCM
Q (d,G), to be the sets analogue

to the ones above, but restricted to elliptic curves with complex multiplication

(CM).

The set ΦCM(1) was determined by Olson [28]:

ΦCM(1) = {C1 , C2 , C3 , C4 , C6 , C2 × C2} .

To the best of the author’s knowledge2, the first to classify the quadratic and

cubic case was Clark [5, Theorem 4], although this result appears in print for

the first time in [6], where Clark, Corn, Rice and Stankewicz computed the

sets ΦCM(d), for 2 ≤ d ≤ 13. In particular, they show that

ΦCM(3) = ΦCM(1) ∪ { C9 , C14 } .

Moreover, Bourdon, Clark and Stankewicz [2] determine ΦCM(p) for any

prime p, and Bourdon and Pollack [3] generalize to ΦCM(d) for all odd d,

showing the answer explicitly for all odd d < 100.

In the present paper, our main results correspond to the study of torsion

subgroups of elliptic curves with complex multiplication defined over Q under

base change to cubic fields:

Theorem 1. ΦCM
Q (3) = ΦCM (3).

Theorem 2. Let be G ∈ ΦCM(1).

• If G ∈ {C4, C6, C2×C2}, then ΦCM
Q (3, G)={G}. In particular, HCM

Q (3, G)=∅.

• If G ∈ {C1, C2, C3}, then the sets ΦCM
Q (3, G) and HCM

Q (3, G) are the following:

2Müller, Ströher and Zimmer in [26]; and Fung, Müller, Pethő, Ströher, Weis,

Williams and Zimmer in [10] and [29] determine all torsion subgroups of elliptic curves with al-

gebraic integer j-invariant over quadratic and cubic fields respectively. Note that elliptic curves

with CM form a subclass of elliptic curves with integral j-invariant. But they do not identify

the CM case within this larger classification problem.
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G ΦCM
Q (3, G) \ {G} HCM

Q (3, G)

C1 { C2, C3, C6 }
C2
C6
C2 , C3

C2 { C6 , C14 }
C6
C14

C3 { C6 , C9 }
C6
C6 , C9

In particular, hCM
Q (3) = 2.

Remark 3. Theorem 2 shows that there is no torsion growth to C4 or C2×C2
over cubic fields.

Our aim in this paper is to go further and gather more detailed information

about torsion growth in these cases. More precisely, once we have given a de-

scription of the possible torsion growth over cubic fields, we give a completely

explicit description of this growth in terms of invariants attached to the elliptic

curve in question. The case of quadratic growth is solved in [13]. In an ongoing

paper [14], we will solve the problem for number fields of low degree.

Theorem 4. Table 1 gives an explicit description of torsion growth over

cubic fields of any elliptic curve defined over Q with CM depending only in its

corresponding CM-invariants (see §2.4 for the definition).

Notation. Given a number field K and an elliptic curve E : y2 = x3+Ax+B,

A,B ∈ K, we denote its j-invariant by j(E), the discriminant of that short

Weierstrass model by ∆(E), and the torsion subgroup of the Mordell–Weil group

of E over K by E(K)tors. For a positive integer n, we denote by Cn = Z/nZ the

cyclic group of order n.

2. Proof of the Theorems

2.1. Preliminaries. Let E be an elliptic curve, and n a positive integer. Denote

by E[n] the set of points on E of order dividing n. The x-coordinates of the points

on E[n] correspond to the roots of the n-division polynomial Ψn(x) of E (cf. [31,

§3.2]). By abuse of notation, in this paper we use Ψn(x) to denote the primitive

n-division polynomial of E, that is, the classical n-division polynomial divided

by the m-division polynomials of E for proper factors m of n. Then Ψn(x) is
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cm k such that E = Ek
cm G ' E(Q)tors HQ(E, 3) cubics Q(α)

3

1 C6 − −
16

C3
C6, C9 3

√
2, α3 − 3α− 1 = 0

−432 C6 3
√

2

r2 (r 6= ±1,±4) C6 3
√
k

−27 C2
C6 3

√
2

r3 (r 6= 1,−3) − −
−108

C1
C6 3

√
2

−3r2 (r 6= ±6) C2, C3 3
√

3r2,
3
√

12r2

6= r2, r3,−3r2 C2 3
√
k

12

1 C6 − −
−3 C2

C6 3
√

2

6= 1,−3 − −

27

1 C3 C6, C9 3
√

2, α3 − 3α− 1 = 0

−3 C1
C2, C3 3

√
2, 3
√

3

6= 1,−3 C2 3
√

2

4

4 C4 − −
−r2 C2 × C2 − −
6= 4,−r2 C2 − −

16
1, 2 C4 − −
6= 1, 2 C2 − −

7
−7 C2

C14 α3 + α2 − 2α− 1 = 0

6= −7 − −

28
7 C2

C14 α3 + α2 − 2α− 1 = 0

6= 7 − −
8 − C2 − −
11 − C1 C2 α3 − α2 + α+ 1 = 0

19 − C1 C2 α3 − α2 + 3α− 1 = 0

43 − C1 C2 α3 − α2 − α+ 3 = 0

67 − C1 C2 α3 − α2 − 3α+ 5 = 0

163 − C1 C2 α3 − 8α− 10 = 0

Table 1. Explicit description of torsion growth over cubic fields of

elliptic curves defined over Q with complex multiplication.

characterized by the property that its roots are the x-coordinates of the points

of exact order n of E. In particular, if E(Q) has no points of order n, then

a necessary condition to have points of order n over a cubic field is that Ψn(x)

has an irreducible factor of degree 3.
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Let E : y2 = x3 + Ax + B be an elliptic curve defined over Q, and d ∈ Q
square-free. The d-quadratic twist of E is defined by Ed : y2 = x3 +Ad2x+Bd3.

Attached to Ed, we have the Q-isomorphic curve E(d) : dy2 = x3 + Ax + B.

The isomorphism maps the point (x, y) ∈ E(d) to (dx, d2y) ∈ Ed. Now, let n be

a positive integer, and Ψn(x) the n-division polynomial of E. So, to determine

if there exists a square-free integer d such that the d-quadratic twist of E has

a point of order n defined over some number field K, it is enough to check if one

of the roots of Ψn(x), say α, belongs to K and α3 + Aα + B = dβ2 for some

β ∈ K. Note that if α ∈ Q, then a necessary condition for the existence of d is

that the degree of K is even.

In the Appendix, we give the necessary background information about el-

liptic curves defined over Q with CM. This information will be used to prove

Theorems 1, 2 and 4.

2.2. Proof of Theorem 1. In Table 1, we give examples for all the cases in

ΦCM(3), therefore all those torsion subgroups appear in ΦCM
Q (3). This completes

the proof of Theorem 1.

Remark 5. Let K be a cubic field, and let E be an elliptic curve defined

over K with CM by a quadratic order of discriminant −cm such that E(K)tors /∈
ΦCM (3) {C1 , C2 , C3 , C4 , C6 , C2 × C2}. Bourdon, Clark and Stankewicz [2, The-

orem 1.4] proved that K is isomorphic to Q(αi) where αi is listed below

i αi βi cm E(K)tors
1 α3

1 − 15α2
1 − 9α1 − 1 = 0 (α2

1 + 10α1 + 1)/4 3 C9
2 α3

2 + 105α2
2 − 33α2 − 1 = 0 (−17α2

2 + 100α2 + 1)/76 27 C9
3 α3

3 − 4α2
3 + 3α3 + 1 = 0 −2α2

3 + 4α3 + 1 7 C14
4 α3

4 − 186α2
4 + 3α4 + 1 = 0 (2α2

4 + 10α4 − 1)/27 28 C14

and over that field E is isomorphic to Ei : y2 + (1 − αi)xy − βiy = x3 − βix2.

Let δ be such that δ3 − 3δ − 1 = 0, then Q(δ) is isomorphic to Q(αi) for i = 1, 2.

Then the elliptic curve E1 (resp. E2) is isomorphic over Q(δ) to E16
3 (resp. E1

27).

Similarly, if γ satisfies γ3 + γ2 − 2γ − 1 = 0, then Q(γ) is isomorphic to Q(αi)

for i = 3, 4 and E3 (resp. E4) is isomorphic over Q(γ) to E−77 (resp. E7
28). (See

Table 1). Then the torsion subgroups C9 and C14 occur for elliptic curves defined

over Q base change to cubic fields.
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2.3. Proof of Theorem 2. For any G ∈ Φ(1), the set ΦQ(3, G) has been char-

acterized in [18, Theorem 1.2]. In particular, for each G ∈ ΦCM(1), we have:

ΦCM
Q (3, G) ⊆ ΦQ(3, G) ∩ ΦCM

Q (3)

=


{G} if G ∈ {C4, C6, C2 × C2},
C3, C6, C9} if G = C3,
C2, C6, C14} if G = C2,
C1, C2, C3, C4, C6, C2 × C2} if G = C1.

Actually, except for G = C1, we have ΦCM
Q (3, G) = ΦQ(3, G)∩ΦCM

Q (3), since there

are explicit examples of each case in Table 1. Furthermore, for G = C1, we have

examples with torsion growth C2, C3, and C6 over cubic fields. Then it remains to

discard the cases C4 and C2×C2. In Table 2, we check that if E is an elliptic curve

defined over Q with CM and trivial torsion, then cm ∈ {27, 11, 19, 43, 67, 163} or

cm = 3 with E : y2 = x3 + k and k 6= r2, r3,−432. With this in mind, we split

the proof into cases.

Case cm ∈ {27, 11, 19, 43, 67, 163}. Note that for these curves, the corre-

sponding j-invariants are neither 0 nor 1728. Then we have just quadratic twists,

in particular, it is only necessary to study the n-division polynomials for Ecm.

In the following cases, the n-division polynomial Ψn(x) refers to the elliptic curve

Ecm. We have that the field of definition of the full 2-torsion, Q(E[2]), is the

splitting field of Ψ2(x) = fcm(x). We have that those polynomials are irreducible,

and the cubic fields that they define are not a Galois extension. This proves that

torsion C2 × C2 is not possible over a cubic field for those cases. Since Ψ4(x) is

irreducible of degree 6, there are no points of order 4 over a cubic field for any of

the treated cases.

Case E : y2 = x3+k with k 6= r2, r3,−432. Here Ψ2(x) = x3+k is irreducible,

since k 6= r3, and the cubic field it defines never is a Galois extension for any k.

Now Ψ4(x) = 2(x6 + 20kx3 − 8k2), and z = −(10 ± 6
√

3)k is a root of Ψ4( 3
√
x).

But z = x3 never occurs for x in a cubic field. We have proved that there are

neither points of order 4 nor full 2-torsion over cubic fields.

This finishes the first part of the proof of Theorem 2. The second part is

a direct consequence of the classification obtained in [18]. In Table 1, we give ex-

amples for each set inHQ(3, G), showing that all its elements belong to ΦCM
Q (3, G),

and thus completing the proof of Theorem 2.
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2.4. Proof of Theorem 4. Let E be an elliptic curve defined over Q with

CM. We have an explicit description in Table 2 of E(Q)tors in terms of its CM-

invariants. Now due to the classification of ΦCM
Q (3, G) for each G ∈ ΦCM(1), we

know the possible torsion growth over cubic fields. In this case, we only need

to compute the n-division polynomials for n ∈ {2, 3, 7, 9} and check if they have

(irreducible) factors of degree 3.

First note that the torsion growth over a cubic field can only be cyclic by

Theorem 2. Moreover, if the torsion over Q has odd order, then the 2-division

polynomial Ψ2(x) is irreducible of order 3. Let α be a root of Ψ2(x), and define

K = Q(α). Then over K the torsion is cyclic of even order.

We split the proof depending on whether the twists are quadratic or not. That

is, depending on whether cm ∈ {3, 4} or not. We start by supposing that cm /∈
{3, 4}, and let Ψn(x) denote the n-division polynomial of Ecm.

Case cm ∈ {11, 19, 43, 67, 163}. The torsion over Q is trivial, therefore the

torsion can grow to C2, C3 or C6. We have that all the irreducible factors of Ψ3(x)

are of even order, so there are no points of order 3 over cubic fields. Only torsion

growth to C2 over the cubic field Q(α) is possible, where Ψ2(α) = 0.

Case cm = 8. We have Ek
8 (Q)tors ' C2 and ΦCM

Q (3, C2) = {C2, C6, C14}.
Therefore we only need to check if Ψ3(x) and Ψ7(x) have irreducible factors of

degree 3. Again all the factors are of even degree. So there is no torsion growth

over cubic fields.

Case cm ∈ {7, 28}. Again Ek
cm(Q)tors ' C2. In both cases, Ψ3(x) is irreducible

(of degree 4), so there are no points of order 3 over cubic fields, and Ψ7(x) has

only a degree 3 factor. In particular, these factors define cubic fields Q(β) that

are isomorphic to Q(α), where α3 + α2 − 2α− 1 = 0.

• For cm = 7: β = 36α− 9 and f7(β) = −7(2233α)2. That is, only for k = −7

we do have points of order 7 over a cubic field.

• For cm = 28: β = 4α2 − 4α+ 13 and f28(β) = 7(4(−3α2 + 3α+ 1))2. In this

case, we only have 7-torsion for k = 7.

Case cm = 16. For k = 1, 2 we have no torsion growth over a cubic field,

since for those values, we get Ek
16(Q)tors ' C4. Now suppose k 6= 1, 2, so that

Ek
16(Q)tors ' C2. We have that there is no torsion growth over cubics, since Ψ3(x)

and Ψ7(x) are irreducible of degrees 4 and 24, respectively.
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Case cm = 27. Let k=1, then E1
27(Q)tors ' C3 and ΦCM

Q (3, C3)={C3, C6, C9}.
We have that the torsion grows to C6 and C9 over Q( 3

√
2) and Q(α), where α3 −

3α − 1 = 0, respectively. Now suppose k 6= 1, then Ek
27(Q)tors ' C1. There is

a degree 3 irreducible factor of Ψ3(x) such that if α is a root of this factor, then

α = −4(2 3
√

9 + 3 3
√

3 + 1). Since f27(α) = −3(4(4 3
√

9 + 6 3
√

3 + 9))2, we have that

there are points of order 3 over a cubic field if and only if k = −3 and the cubic

field is Q( 3
√

3). On the other hand, the torsion grows to C2 over Q( 3
√

2) for any k.

Case cm = 12. For k = 1, we have no torsion growth over a cubic field, since

E1
12(Q)tors ' C6. Let k 6= 1, then Ek

12(Q)tors ' C2. There is no torsion growth

over a cubic field to C14, since all the irreducible factors of Ψ7(x) are of degree

divisible by 6. Now the 3-division polynomial Ψ3(x) satisfies Ψ3(α) = 0 where

α = −2 3
√

4 − 2 3
√

2 − 1. In this case, we have f12(α) = −3(2( 3
√

4 + 3
√

3 + 1))2.

That is, there are points of order 3 over a cubic field K if and only if k = −3 and

K = Q( 3
√

2).

Finally, the non-quadratic twists:

Case cm = 4. For k = 4 and k = −r2, the torsion subgroup over Q is

isomorphic to C4 and C2 × C2, respectively. Therefore, for those values, there is

no torsion growth over cubic fields. Suppose k 6= 4,−r2, then Ek
4 (Q)tors ' C2.

Then the torsion can grow over a cubic field to C6 or C14. Let Ψ3(x) and Ψ7(x)

be the 3- and 7-division polynomials, respectively, of Ek
4 . Then:

• Ψ3(x) = k2g3(x2/k), where g3(x) = 3x2 + 6x− 1 is irreducible.

• Ψ7(x) = k12g7(x2/k), where g7(x) = 7x12 + 308x11 − 2954x10 − 19852x9 −
35231x8 − 82264x7 − 111916x6 − 42168x5 + 15673x4 + 14756x3 + 1302x2 +

196x− 1 is irreducible.

Then there cannot be points of order 3 or 7 over cubic fields. We have proved

that for the family of curves with cm = 4, there is no torsion growth over cubic

fields.

Case cm = 3. In this case, the elliptic curve has the model Ek
3 : y2 = x3 + k

for k ∈ Q∗/(Q∗)6. Note that this case has been studied by Dey and Roy [9],

although they used different techniques. We split the proof depending on the

torsion over Q:

• Ek
3 (Q)tors ' C6, then k = 1, and there is no torsion growth over cubic fields.

• Ek
3 (Q)tors ' C3, then k = −432 or k = r2 6= 1. Here the torsion grows

to C6 over Q( 3
√
k), since the 2-division polynomial is x3 + k, and k is not

a cube in Q. The other possible torsion growth over a cubic is C9. First let

k = −432, then g(x) = x3 + 36x2 − 1728 is the unique degree 3 irreducible
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factor of the 9-division polynomial of E−4323 . Let α be a root of g(x), then

α3 − 432 is not a square in Q(α). Then there is no torsion growth over

Q(α). Now suppose k = r2 6= 1 and P3 = (0, r) is a point of order 3 over

Q. Then P9 = (β, rγ) ∈ Q(α, β) satisfies 3P9 = P3, where α3 − 3α − 1 = 0,

γ = 2α2 − 4α− 1, and β3 − r2γ2 + r2 = 0. Therefore, the field of definition

of P9 is of degree 3 or 9. We are going to check in which conditions this field

is of degree 3 – equivalently, when there is torsion growth to C9 over a cubic

field. We need that β ∈ Q(α). Note that β3 = r2(γ2−1) = 4(α2−α−1)3r2.

In other words, the equation z3 = 4r2 has solutions over Q(α). But this only

happens if and only if r = 4s3, s ∈ Q; and k = 16 is the unique possibility,

since k must belong to Q∗/(Q∗)6.

• Ek
3 (Q)tors ' C2, then k = r3 6= 1. In this case, Ek

3 is the r-quadratic twist

of E3. Let Ψn(x) be the n-division polynomial of E3. In this case, the torsion

can grow over a cubic field to C6 or C14. The last case is not possible, since

all the irreducible factors of Ψ7(x) are of degree divisible by 6. On the other

hand, Ψ3(x) = 3x(x3+4) and f3( 3
√

4) = −3. Then, there are points of order 3

over a cubic field K if and only if r = −3 (i.e., k = −27) and K = Q( 3
√

2).

• Ek
3 (Q)tors ' C1, then k 6= r2, r3,−432. We have ΦCM

Q (3, C1) = {C1, C2, C3, C6}.
We are going to study the n-division polynomial, Ψn(x), of Ek

3 :

– Ψ2(x) = x3 + k is irreducible, then there is a point of order 2 over

Q( 3
√
k).

– Ψ3(x) = 3x(x3 + 4k). Note that if x = 0, then the equation y2 = k has

solution over a cubic field if and only if k is a square over Q. But we

have assumed that k 6= r2. Let α 6= 0 be another root of Ψ3(x) = 0.

Then y2 = α3 + k = α3 + 4k − 3k = −3k has solution over a cubic field

if and only if k = −3s2 for some r ∈ Q. In particular, the cubic field is

Q(
3
√

12s2).

Finally, we study the torsion growth over a cubic field K to C6. Necessarily,

k = −3s2 and the cubic fields of definition of the points of order 2 and 3

must be equal to K. From the equality Q(
3
√

3s2) = Q(
3
√

12s2), we obtain

K = Q( 3
√

4). On the other hand,
3
√

3s2 ∈ K if and only if s = 6t3; but

necessarily, t = ±1, since k ∈ Q∗/(Q∗)6. Then we conclude that the torsion

grows over a cubic field K to C6 if and only if k = −108 and K = Q( 3
√

2).

Remark 6. All the computations in this paper have been done using Magma [1],

and the source code is available in the online supplement [12].
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Appendix. Elliptic curve over Q with CM.

Here we give a summary of the necessary information related to elliptic curves

over Q with CM used in this paper. Let E be an elliptic curve defined over Q
with CM by an order R = Z+ fOK of conductor f in a quadratic imaginary field

K = Q(
√
−D), where OK is the ring of integer of K. Then R is one of the thirteen

orders that correspond to the first and second column of Table 2. Each order

corresponds to a Q-isomorphic class of elliptic curves defined over Q with CM.

The corresponding j-invariant appears at the third column. The fourth column,

cm, denotes the absolute value of the discriminant of the CM quadratic order R.

Note that the integer cm gives the Q-isomorphic class of E. The fifth column gives

a pair of integers [Acm, Bcm] such that if we denote by fcm(x) = x3 +Acmx+Bcm,

then Ecm : y2 = fcm(x) is an elliptic curve with j(Ecm) equal to the j-invariant j

at the same row. That is, Ecm is a representative for each class. Now by the

theory of twists of elliptic curves (cf. [30, X §5]) applied to elliptic curves defined

over Q with CM, we have:

• If cm ∈ {12, 27, 16, 7, 28, 11, 19, 43, 67, 163} (i.e., j(E) 6= 0, 1728), then E is

Q-isomorphic to the k-quadratic twist of Ecm for some square-free integer k.

That is, E has a short Weierstrass model of the form Ek
cm : y2 = x3 +

k2Acmx+ k3Bcm.

• If cm = 3 (i.e., j(E) = 0), then E has a short Weierstrass model of the form

Ek
3 : y2 = x3 + k, where k is an integer such that k ∈ Q∗/(Q∗)6.

• If cm = 4 (i.e., j(E) = 1728), then E has a short Weierstrass model of the

form Ek
4 : y2 = x3 + kx, where k is an integer such that k ∈ Q∗/(Q∗)4.

Note that k and cm are uniquely determined by E. We call them the CM-

invariants of the elliptic curve E.

Finally, given an elliptic curve E defined over Q with CM, in the last two

columns of Table 2, we give a characterization of its torsion subgroup (over Q)

depending on its CM-invariants (cm, k) (see [13, Table 3, §2]).
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zá
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−D f j cm [Acm, Bcm] k Ek
cm(Q)tors

−3

1 0 3 [0,1]

1 C6
−432, r2 6= 1 C3

r3 6= 1 C2
6= r2, r3,−432 C1

2 24 · 33 · 53 12 [−15, 22]
1 C6
6= 1 C2

3 −215 · 3 · 53 27 [−480, 4048]
1 C3
6= 1 C1

−4

1 26 · 33 = 1728 4 [1, 0]

4 C4
−r2 C2 × C2

6= 4,−r2 C2

2 23 · 33 · 113 16 [−11, 14]
1, 2 C4
6= 1, 2 C2

−7
1 −33 · 53 7 [−2835,−71442] − C2
2 33 · 53 · 173 28 [−595, 5586] − C2

−8 1 26 · 53 8 [−4320, 96768] − C2
−11 1 −215 11 [−9504, 365904] − C1
−19 1 −215 · 33 19 [−608, 5776] − C1
−43 1 −218 · 33 · 53 43 [−13760, 621264] − C1
−67 1 215 · 33 · 53 · 113 67 [−117920, 15585808] − C1
−163 1 −218 · 33 · 53 · 233 · 293 163 [−34790720, 78984748304] − C1

Table 2. Elliptic curves defined over Q with CM. Torsion over Q.
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