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ABSTRACT
Let E be an elliptic curve without complex multiplication defined over the rationals. The purpose of
this article is to define a positive integer A(E), that we call the Serre’s constant associated to E, that
gives necessary conditions to conclude that qE,m, the mod m Galois representation associated to E, is
non-surjective. In particular, if there exists a prime factor p of m satisfying valpðmÞ # valpðAðEÞÞ>0
then qE,m is non-surjective. Conditionally under Serre’s Uniformity Conjecture, we determine all the
Serre’s constants of elliptic curves without complex multiplication over the rationals that occur infin-
itely often. Moreover, we give all the possible combination of mod p Galois representations that
occur for infinitely many non-isomorphic classes of non-CM elliptic curves over Q, and the known
cases that appear only finitely. We obtain similar results for the possible combination of maximal
non-surjective subgroups of GL2ðZpÞ: Finally, we conjecture all the possibilities of these combina-
tions and in particular all the possibilities of these Serre’s constants.
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1. Introduction

Let E=Q be an elliptic curve and n a positive integer. We
denote by E½n% the n-torsion subgroup of Eð "QÞ, where "Q is
a fixed algebraic closure of Q: The absolute Galois group
Galð "Q=QÞ acts on E½n% by its action on the coordinates of
the points, inducing a Galois representation

qE, n : Galð "Q=QÞ ! AutðE n½ %Þ,

called the mod n Galois representation associated to E.
Notice that since E½n% is a free Z=nZ-module of rank 2, fix-
ing a Z-basis of E½n%, we identify AutðE½n%Þ with
GL2ðZ=nZÞ: Then, we rewrite the above Galois representa-
tion as

qE, n : Galð "Q=QÞ ! GL2ðZ=nZÞ:

Therefore, we can view qE, nðGalð "Q=QÞÞ as a subgroup of
GL2ðZ=nZÞ, determined uniquely up to conjugacy, and
denoted by GEðnÞ in the sequel.

Fixing a prime p and choosing compatible bases for E½pk%
for all k, one can take the inverse limit of these mod pk

Galois representations and construct a new map

qE, p1 : Galð "Q=QÞ ! GL2ðZpÞ,

called the p-adic Galois representation associated to E. Let us
denote by G1

E ðpÞ the image of qE, p1 , which is determined
uniquely up to conjugacy. In certain instances, we will say
that GEðnÞ ¼ G or G1

E ðpÞ ¼ G for some group G; this will

always mean that we have fixed a basis so that we remove
ambiguity of working up to conjugacy.

Suppose that E does not have complex multiplication
(CM in the sequel). One of the first major results about the
images of Galois representations associated to an elliptic
curve is a renowned theorem of Serre [37, Th!eor#eme 2] that
asserts that qE, p is not surjective for a finite number of
primes p, called exceptional primes (Duke [21] showed that
almost all non-CM elliptic curves have no exceptional
primes). In other words, there exists a positive integer CE,
depending on E, such that qE, p is surjective for any prime
p>CE: After proving this theorem, Serre immediately asked
[37, §4.3] if it was possible to make the constant CE inde-
pendent of E. Moreover, Serre in [38, page 399] asked if
CE<41 always holds. That is, he asked the follow-
ing question:

Serre’s Uniformity Question. If E=Q is a non-CM elliptic
curve, then must it be that qE, p is surjective for any
prime p # 41?

Nowadays, an affirmative answer to the above question has
received the name of Serre’s Uniformity Conjecture (or some-
times just Uniformity Conjecture) despite the fact that Serre
himself never conjectured it to be true. Since Serre first asked
the question there has been much progress towards to proving
it. A summary of these results can be found in the following
theorem (see [3, 7, 8, 34, 37, 42] for more details):

Theorem 1. Let E=Q be a non-CM elliptic curve and p a
prime. Then one the following possibilities occurs:
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(i) GEðpÞ ¼ GL2ðFpÞ:
(ii) p 2 f2, 3, 5, 7, 11, 13, 17, 37g, and GEðpÞ is conjugate

in GL2ðFpÞ to one of the groups in Tables A1 and A2.
(iii) p # 17 : GEðpÞ is conjugate to a subgroup of the nor-

malizer of a non-split Cartan subgroup of level p.

Beside the above theorem, Lemos ([29, Theorem 1.1],
[30, Theorem 1.4]) has recently obtained partial results in
the direction of a complete proof of the Serre’s
Uniformity Conjecture:

Theorem 2. Let E=Q be a non-CM elliptic curve. Suppose
that one the following possibilities occurs:

(i) E admits a non-trivial cyclic isogeny defined over Q:
(ii) There exists a prime q for which GEðqÞ is contained in

the normalizer of a split Cartan subgroup of GL2ðFqÞ:

Then qE, p is surjective for any prime p> 37.

Zywina conjectures [42, Conjecture 1.12] that Theorem 1
(iii) is not possible. This is what we call the Strong
Uniformity Conjecture.

Strong Uniformity Conjecture. Let E be a non-CM elliptic
curve defined over Q and jE its j-invariant. If p # 17 is a
prime such that

ðp, jEÞ 62 fð17, ' 17 ( 3733=217Þ, ð17, ' 172 ( 1013=2Þ,
ð37, ' 7 ( 113Þ, ð37, ' 7 ( 1373 ( 20833Þg,

then GEðpÞ ¼ GL2ðFpÞ:

Zywina classifies all of the possible images of the mod p
images of non-CM elliptic curves defined over Q given the
corresponding moduli spaces for p ) 13, except the case
when the image of GEð13Þ in PGL2ðF13Þ is isomorphic to S4
(the permutation group of 4 elements) (see [3, 5, 42]).

Conjecture 3. Let E be a non-CM elliptic curve defined
over Q and jE its j-invariant. Then the image of GEð13Þ in
PGL2ðF13Þ is isomorphic to S4 if and only if

jE 2
!
24 ( 5 ( 134 ( 173

313
, ' 212 ( 53 ( 11 ( 134

313
,

218 ( 33 ( 134 ( 1273 ( 1393 ( 1573 ( 2833 ( 929
513 ( 6113

"
:

Assuming1 Conjecture 3 and the Strong Uniformity
Conjecture, Zywina gives all the possible groups GEðpÞ for
E=Q and the corresponding moduli spaces. This data can be
found in Tables A1 and A2.

Remark 4. Let E=Q be a non-CM elliptic curve and p a
prime. Serre [39, IV] showed that if p # 5 then qE, p is sur-
jective if and only if qE, p1 is surjective. But when p¼ 2 or 3
it is not the case. The reason is that there are proper sub-
groups of SL2ðZ=4ZÞ and SL2ðZ=8ZÞ that surject onto

SL2ðZ=2ZÞ under the standard reduction map as well as a
proper subgroup of SL2ðZ=9ZÞ that surjects onto
SL2ðZ=3ZÞ: These groups and the corresponding moduli
spaces of elliptic curves can be found in [22] or [32] and
[20] or [36] and are available in Table A4.

In view of the above remark we make the follow-
ing definition:

Definition 5. Let E=Q be a non-CM elliptic curve and p a
prime. We say that p is adically-exceptional for E if qE, p1 is
not surjective.

Remark 4 asserts that if p # 5 then p is exceptional if
and only if it is adically-exceptional, and that the only pos-
sible primes that could be non-exceptional but adically-
exceptional are p¼ 2 and p¼ 3.

An affirmative answer to the Serre’s uniformity question
does not give any information about the possible combina-
tions of exceptional primes (or adically-exceptional primes)
which may occur for a given non-CM elliptic curve defined
over Q: In attempt to study this question, we give the fol-
lowing definition.2

Definition 6. Let E=Q be a non-CM elliptic curve, then we
define Serre’s constant associated to E to be

AðEÞ ¼
Y

p prime

pk

where k is the smallest positive integer such that qE, pk is
non-surjective if such an integer exists or 0 otherwise.

Note that if p is not adically-exceptional then
valpðAðEÞÞ ¼ 0: In particular, if no prime is not adically-
exceptional for E then A(E) ¼ 1. Moreover, Jones [24] has
proved that almost all non-CM elliptic curve over Q have
A(E) ¼ 1. On the other hand, if m is a positive integer,
A(E) gives necessary conditions to conclude that qE,m is
non-surjective.

Proposition 7. Let E=Q be a non-CM elliptic curve and
m 2 N. If there exists a prime factor p of m satisfying
valpðmÞ # valpðAðEÞÞ>0 then qE,m is non-surjective.

Remark 8. The hypothesis of above proposition is a neces-
sary but not sufficient condition. Let E=Q be the elliptic
curve with Cremona label 3891b1. Then E is a Serre curve,
so all the p-adic Galois representations are surjective.
Therefore A(E) ¼ 1. In this case if m ¼ 2 ( 3 ( 1297, then
the mod m Galois representation is non-surjective. The rea-
son is that this curve has entanglement: QðE½2%Þ \
QðE½3891%Þ ¼ Q

ffiffiffiffiffiffi
DE

p$ %
, where DE is the discriminant of the

minimal model of E, and ½GL2ðZ=mZÞ : GEðmÞ% ¼ 2
(cf. [15]).

We will use the following notation:

1J. S. Balakrishnan, N. Dogra, J. S. M€uller, J. Tuitman, and J. Vonk have recently
announced a proof of this conjecture but have yet to make the results
available publicly.

2The definition of Serre’s constant that appears in this paper is a
generalization of the one that Cojocaru defined at [13].
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* Let A be the set of the integers A(E) where E runs over
all non-CM elliptic curve over Q:

* Let A1 be the subset of A that occur infinitely often.
More precisely, N 2 A1 if there are infinitely many
non-CM elliptic curves E, non-isomorphic over "Q, such
that A(E) ¼ N.

Remark 9. Notice that Serre’s Uniformity Conjecture is
equivalent to the finiteness of the set A: We also point out
here that the exponents that appear on 2 and 3 on numbers
in A are bounded. We know this because, if E=Q is an ellip-
tic curve, then if qE, 8 or qE, 9 respectively are surjective, then
qE, 21 or qE, 31 respectively have to be surjective.

The first theorem of this paper is the following:

Theorem 10. Assuming the Uniformity Conjecture:

A1 ¼ f1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21,
24, 28, 40, 56, 104g:

Remark 11. We need to assume the Uniformity Conjecture
in the proof of the complete classification of A1 at
Theorem 10 in order to ensure that there are infinitely
many non-isomorphic curves with the Serre’s constant that
we want. Without assuming uniformity, we cannot be sure
that for all but finitely many of the "Q-isomorphism classes
the associated Serre’s constant does not contain some unex-
pected prime factors. Using Theorem 2, much of Theorem
10 can be made independent of the Uniformity Conjecture.
In fact, only 4, 8, 9, 11, 20 and 21 are conditionally
under uniformity.

In Section 2, Theorem 17 classifies the possible combina-
tions of mod p Galois representations that occur for infinitely
many non-isomorphic classes of non-CM elliptic curves over
Q, and the known cases that appear only finitely. We obtain
similar results in Theorem 19 for the possible combinations of
maximal non-surjective subgroups of GL2ðZpÞ: Theorem 10 is
a direct consequence of the Theorem 17 and 19. Besides classi-
fying which numbers occur as Serre’s constant for infinitely
many elliptic curves we construct the moduli space for each of
the possible combinations of images and determine all of the
points on the corresponding modular curves when the genus
) 2: Further, for each curve of genus # 3 we do a point
search to find all easily visible points and we compute Serre’s
constant for each curve in the LMFDB. The resulting data are
compiled in tables at Appendix A. These results and the previ-
ous search motivate the following conjecture.

Conjecture 12. A ¼ A1 [ f17, 36, 37, 44, 60, 120, 168g:
The above conjecture is being treated in an ongoing con-

tinuation of this paper at [17].

Notation. Throughout the paper we will refer to conjugacy
classes of subgroups of GL2ðZ=pZÞ using the notation estab-
lished by Sutherland in [40, Section 6.4] and used throughout
the LMFDB database [31]. Notice that Zywina [42] uses differ-
ent notation for such conjugacy classes and in Tables A1 and

A2 we give the translation between Sutherland’s and Zywina’s
labels. Any specific elliptic curves mentioned in this paper will
be referred to by Cremona label [9, 14].

2. Results for combinations of Galois representations
for non-CM elliptic curves over Q

One of the goals of this paper is to classify all the possible
combinations of mod p Galois representations attached to
elliptic curves defined over Q: We wish to point out here
that Morrow [35] began the study of the possible combina-
tions of mod n1n2 Galois representations such that n1 is a
power of 2 and n2<17 is a prime. Then Camacho-Navarro
et al. [12] are continuing this study to the case of subgroups
of GL2ðZ=n1n2ZÞ where the corresponding modular curve
has low genus, and/or is hyperelliptic.

In order to establish the appropriate language to study
the possible combinations of images that can occur we give
the following definitions.

Definition 13. Let E=Q be a non-CM elliptic curve and SE
be the set of exceptional primes of E. Let S + SE and for
each p 2 S let Gp be a proper subgroup of GL2ðZ=pZÞ: We
say that E is of exceptional type (or type for short) ½Gp : p 2
S% if for every p 2 S the group GEðpÞ is conjugate to a sub-
group of Gp. We say that the exact exceptional type (or
exact type) of E is ½Gp : p 2 S% if S¼ SE and GEðpÞ is conju-
gate to Gp (not a proper subgroup of Gp) for every p 2 S:

Here we consider two possible types ½Gp : p 2 S% and
½Hp : p 2 T% equal if S¼T and for every p 2 S, Gp is conju-
gate to Hp in GL2ðZ=pZÞ: Similarly, we say that ½Gp : p 2 S%
is a smaller type than (or subtype of) ½Hp : p 2 T% if S + T
and Gp is conjugate to a subgroup of Hp for every p 2 S:
We will refer to #S as the length of type ½Gp : p 2 S%: With
these conventions, the exact type of E=Q is unique and
equal to ½GEðpÞ : p 2 SE%: We also define the level of a given
type ½Gp : p 2 S% to be

Q
p2S p: We say a type ½Gp : p 2 S% is

maximal if it is not a subtype of any other type of the same
level. We point here out that for almost all elliptic curves
E=Q the set SE ¼ ; (cf. [21]). In this case we say that the
exact type of E is [ ] and refer to this as the trivial type.

Before moving on we introduce the concept of a modular
curve and explore the relationship between these curves and
certain types. Let G be a subgroup of GL2ðZ=nZÞ satisfying
'I 2 G and detðGÞ ¼ ðZ=nZÞ,: There is a modular curve XG

associated to G. This curve is defined over Q, smooth, project-
ive and geometrically irreducible. Moreover, there is a non-
constant morphism jG : XG ! P1ðQÞ, called the j-map of
G. Further, given another group GˆG0 + GL2ðZ=nZÞ satisfy-
ing 'I 2 G0 and detðG0Þ ¼ ðZ=nZÞ,, there exists a non-con-
stant morphism XG ! XG0 : One of the main properties of the
pair (XG, jG) is that for an elliptic curve E=Q with j-invariant
jE 62 f0, 1728g, GEðnÞ is conjugate in GL2ðZ=nZÞ to a sub-
group of G if and only if jE 2 jGðXGðQÞÞ \Q:

Remark 14. Here we pause to point out that it is sufficient
to consider G containing –I since if H is an index 2 sub-
group of G such that G ¼ hH,'Ii, then XG ’ XH: This is
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because every non-cuspidal non-CM point on XG corre-
sponds to a "Q-isomorphism class of elliptic curves such that
GEðnÞ is conjugate to a subgroup of G. Inside of each of
these "Q-isomorphism classes there is at least one Q-iso-
morphism class (or twist) of curves whose image is actually
contained in H. Thus, classifying the rational points on XH

amounts to classifying the points on XG and then determin-
ing which twists in the "Q-isomorphism classes actually have
GEðnÞ in H. We also point out here for every elliptic curve
with rational j-invariant, there is an elliptic curve with the
same j-invariant such that –I is in the image of the adelic
Galois representation associated to the new elliptic curve.

The relationship between modular curves arising from the
fact that given a type ½Gp : p 2 S% of level N we can associate a
group G + GL2ðZ=NZÞ, where G is the largest group (by con-
tainment) such that ppðGÞ ¼ 6Gp for all p 2 S: Here pp :
GL2ðZ=NZÞ ! GL2ðZ=pZÞ is the standard component wise
reduction map which is well-defined since p divides N by con-
struction. We point out here that the condition is that
ppðGÞ ¼ 6Gp and not just that ppðGÞ ¼ Gp so that we can
ensure that –I is in the group associated to a given type. Then,
associated to the group G is the modular curve XG whose non-
cuspidal and non-CM rational points correspond to "Q-iso-
morphism classes of elliptic curves over Q of type ½Gp : p 2 S%:

In the other direction, given a group G + GL2ðZ=NZÞ
with 'I 2 G and detðGÞ ¼ ðZ=NZÞ,, we let SG be the set
of primes p such that p divides N and ppðGÞ 6¼ GL2ðZ=pZÞ:
Then we can associate a type ½ppðGÞ : p 2 SG% of levelQ

p2SGðpÞ: Again, the "Q-isomorphism classes of curves com-
ing from points in XGðQÞ all have type ½ppðGÞ : p 2 SG%: In
fact, every "Q-isomorphism classes of curves of type ½ppðGÞ :
SG% arises as a point on XG exactly when N is square free
and G is maximal among the groups of level N correspond-
ing to the type ½ppðGÞ : p 2 SG%:

This association of types with groups, and hence modular
curves, will be extremely useful in studying what combina-
tions of images can occur. We will use it intimately in the
remaining sections.

Next, we give a definition of adic-type and exact
adic-type.

Definition 15. Let E=Q be a non-CM elliptic curve and S1E
be the set of adically exceptional primes. Let S + S1E : For
each p 2 S, let Gp be a proper subgroup of GL2ðZpÞ: We
say that E is of adically-exceptional type (or adic-type for
short) ½Gp : p 2 S% if for every p 2 S the group G1

E ðpÞ is con-
jugate to a subgroup of Gp. We say that the exact adically-
exceptional type (or exact adic-type) of E is ½Gp : p 2 S% if
S ¼ S1E and G1

E ðpÞ is conjugate to Gp (not a proper sub-
group of Gp) for every p 2 S:

We adopt similar conventions as above to compare two
adic-types so that everything is well-defined changing what is
necessary. For a given adic-type ½Gp : p 2 S% we define the level
of that type to be

Q
p2S p

kp where kp is the minimum integer

such that the standard component wise reduction map Gp !
GL2ðZ=pkpZÞ is not surjective. For the sake of notational

brevity, for each Gp + GL2ðZpÞ that occurs in an adic-type we
will denote Gp by a subgroup ~Gp + GL2ðZ=pkZÞ for some k
such that Gp ¼ p'1ð~GpÞ where p : GL2ðZpÞ ! GL2ðZ=pkZÞ is
again the standard component wise reduction map.

Remark 16. Let E=Q be an elliptic curve and qE :

Galð "Q=QÞ ! GL2ðẐÞ be the adelic Galois representation
associated to E constructed choosing bases for E½n% compatible
with divisibility and taking inverse limits. It is tempting to
think that knowing the exact adic-type of E is equivalent to
knowing the image of qE up to conjugation, but this is not the
case. The gap is that the exact adic-type does not contain any
information about the entanglements between the field of def-
inition of each Tate module. Serre showed that there must be
some entanglement between these fields using the Weil paring
and the Kronecker–Weber theorem and so we usually cannot
recover the image of the adelic Galois representation attached
to E just from the exact adic-type of E.

The following theorem gives the set of possible excep-
tional types that occur for infinitely many non-isomorphic
classes of non-CM elliptic curves over Q, and the known
cases that appear only finitely.

Theorem 17.
(A) The following nontrivial exceptional types occur for

infinitely many non-isomorphic classes of non-CM ellip-
tic curves over Q :
* ½Gp% for any Gp in Tables A1 and A2 except

7Ns.3.1, 11B.10.4, 11B.10.5, 13S4,
17B.4.2, 17B.4.6, 37B.8.1 and 37B.8.2
(that appear only for finitely many Q-iso-
morphic classes).

* ½G2, Gp%, where G2 is:
? 2B and Gp is 3B, 3B.1.1, 3B.1.2, 3Cs,

3Cs.1.1, 3Nn, 3Ns, 5B, 5B.4.1,
5B.1.1, 5B.1.4, 5B.4.2, 5B.1.2, or
5B.1.3.

? 2Cn and Gp is 3B, 3B.1.1, 3B.1.2, 5S4,
7B, 7B.2.1, or 7B.2.3.

? 2Cs and Gp is 3B, 3B.1.1, or 3B.1.2.
* ½G3, Gp%, where G3 is 3Nn and Gp is 5B, 5Ns, 5Nn,

or 7Nn.
(B) For the following exceptional types there are only a

finite number of "Q-isomorphic classes:
* ½Gp% where Gp is 7Ns.3.1, 11B.10.4,

11B.10.5, 13S4, 17B.4.2, 17B.4.6,
37B.8.1 or 37B.8.2.

* ½G3, Gp%, where G3 is:
? 3B and Gp is 5B, 5B.4.1, 5B.1.1, 5B.4.2,
5B.1.2, 5S4, 7B, 7B.2.1, or 7B.2.3.

? 3B.1.1 or 3B.1.2 and Gp is 5B.1.3,
5B.1.4, 5B.4.1, 5B.4.2, 5S4, 7B,
7B.2.1, or 7B.2.3.

? 3Ns and Gp is 5B.
Moreover, we give unconditionally the moduli space for

each of the possible exceptional types (see Tables A1, A2, A3,
A6, A7, A9, A11, A12), except for the cases of level 13, 17
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and 37 which are conditionally under Conjecture 3 and the
Strong Uniformity Conjecture.

Corollary 18. Assuming Serre’s Uniformity Conjecture, the
set of nontrivial exact types such that there exist infinitely
many non-isomorphic classes of non-CM elliptic curves over
Q of that type correspond to the cases that appear at
Theorem 17 (A).

The next result is similar to Theorem 17 but we do not
obtain a complete characterization, instead we obtain only
maximal adically exceptional types that can occur.

Theorem 19.
(A) The following list of maximal adically-exceptional types

occur for infinitely many non-isomorphic classes of
non-CM elliptic curves over Q :
* ½Gp% where Gp is 2B, 2Cn, 3B, 3Nn, 5Nn, 5B,

5S4, 7Ns, 7Nn, 7B, 11Nn or 13B.
* ½Gp% where Gp is 4X3, 4X7, 8X4, 8X5, or 9XE.
* ½G2, Gp%, where G2 is:
? 2B and Gp is 3B, 3Nn, or 5B.
? 2Cn and Gp is 3B, 5S4, or 7B.
? 4X3 and Gp is 3B, 5S4, or 7B.
? 4X7 and Gp is 3Nn, or 5S4.
? 8X4 and Gp is 3B, 5S4, 7B, 5B, or 13B.
? 8X5 and Gp is 3B, 5S4, 5Nn, or 7B.

* ½G3, Gp%, where G3 is 3Nn and Gp is 5B, 5Nn,
or 7Nn.

(B) There is only a finite number of "Q-isomorphic classes
of elliptic curves with the following maximal adic-types:
* ½Gp% where Gp is 13S4, 17B.4.2, 17B.4.6,

37B.8.1 or 37B.8.2.
* ½G2, Gp%, where G2 is:
? 4X3 and Gp is 11B.10.4, or 11B.10.5.
? 4X7 and Gp is 9XE, 3B, 5B, or 7B.
? 8X5 and G7 is 7Ns.3.1.

* ½G3, Gp%, where G3 is 3B and Gp is 5B, 5S4, or 7B.
* ½G2, G3, G5%, where G2 (resp. G3, G5) is 4X3 (resp.

3B, 5S4).
* ½G2, G3, G5%, where G2 (resp. G3, G5) is 8X4

(resp. 3B, 5B).
* ½G2, G3, G7%, where G2 (resp. G3, G7) is 8X4 (resp.

3B, 7B).
Moreover, we give unconditionally the moduli space for each
of the possible maximal adic-types above (see Tables A1, A4,
A5, A6, A9, A11, and Remark 25), except (maybe) the case
[4X7,9XE] and for the cases of level 13, 17 and 37 that
are conditionally under Conjecture 3 and the Strong
Uniformity Conjecture.

Corollary 20. Assuming Serre’s Uniformity Conjecture, any
adically-exceptional type that has infinitely many elliptic
curves over Q of exactly that type must be a subtype of one
of those listed in the cases that appear at Theorem 19 (A).

3. Invariance of the Serre’s constant under
quadratic twists

The purpose of this section is to prove that A(E) is an invari-
ant of the isomorphism class of a non-CM elliptic curve.

Proposition 21. Let E=Q be a non-CM elliptic curve and let
p be a prime. If E0=Q is a quadratic twist of E, then qE, p is
surjective if and only if qE0, p is surjective.

Proof. Notice that it is enough to show that if qE, p is surjec-
tive, then qE0 , p is surjective. Now, if E0 is a quadratic twist of
E, then there is a square free D 2 Z such that E and E0 are
isomorphic over Q

ffiffiffiffi
D

p$ %
: Assume that GEðpÞ ¼ GL2ðZ=pZÞ:

Then, it must be that either GE0ðpÞ ¼ GL2ðZ=pZÞ or
GL2ðZ=pZÞ ’ GE0ðpÞ3Z=2Z: In the last case, we would
have that GE0ðpÞ is a subgroup of index 2 inside of
GL2ðZ=pZÞ: We have that detqE, p is the cyclotomic charac-
ter, a standard consequence of the Weil pairing says that
det : GE0ðpÞ ! ðZ=pZÞ, is surjective. According to [1,
Figure 5.1] there are no such groups unless p¼ 2 and GE0ðpÞ
is conjugate to 2Cn, but the property that GE0ðpÞ is conju-
gate to 2Cn is equivalent to E0 having a square discriminant
which is invariant under quadratic twists. This would mean
that GEðpÞ is not surjective giving a contradiction. w

Corollary 22. Let E=Q be a non-CM elliptic curve. Then
A(E) is invariant under "Q-isomorphism. In other words, A(E)
only depends on jE.

Proof. All that is left is to prove is that if p is adically-excep-
tional for E, then it is adically-exceptional with the same
exponent for all of the quadratic twists of E. This follows
from the exact same argument as above together with the
fact that the 5 maximal groups in Table A4 that surject onto
GL2ðZ=pZÞ but are not all GL2ðZ=pkZÞ for some k # 2, all
contain –I and thus cannot be quadratic twisted into. That
is, because they contain –I, if G1

E ðpÞ is not in one of these
groups and E0 is a quadratic twist of E, then G1

E0 ðpÞ is not in
one of these groups either. w

Corollary 22 allow us to take representatives of each of
the finitely many "Q-isomorphism classes of elliptic curves
and compute their Serre’s constant.

4. Outline of the computations: Fiber products of
pairs of modular curves

We are now ready to fully leverage the connection between
types and subgroups of GL2ðZ=nZÞ and their corresponding
modular curves. To start we survey some of the results
about modular curves that will form the foundation for our
computations. For n ¼ p ) 11 prime, Zywina [42] classifies
all of the possible subgroups GEðpÞ + GL2ðZ=pZÞ for elliptic
curves E=Q: The case p¼ 13 is the first prime for which
Zywina does not have a complete description. He classifies
all the possible subgroups GEð13Þ except the cases concern-
ing subgroups of 13Nn,13Ns and 13S4: Baran [5] showed
that the modular curves X13Nn and X13Ns are both iso-
morphic to a genus 3 curve, and recently Balakrishnan et al.
[3] have determined that this genus 3 curve has no nonsin-
gular, non-CM rational points. Therefore there are no non-
CM elliptic curves E=Q such that GEð13Þ is a subgroup of
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13Nn or 13Ns: The remaining case is the curve X13S4:
Banwait and Cremona [6] have shown that this curve has
genus 3 and at least three nonsingular, non-CM points cor-
responding to the three j-invariants that appear in
Conjecture 3. Recently, Balakrishnan et al. have announced
that using similar techniques to those in [3], the curve
X13S4 has only the three nonsingular, non-CM rational
points found by Banwait and Cremona. Finally, thanks to
Theorem 1 we have that if p # 17 and qE, p is non-surjective
then GEðpÞ appears in Table A1 or GEðpÞ is a subgroup of
pNn: In the latter case, Baran [4] has showed that the genus
of XpNn # 2: On the other hand, by Remark 4 if p # 5 we
have G1

E ðpÞ ¼ GL2ðZpÞ if and only if GEðpÞ ¼ GL2ðZ=pZÞ
while when p¼ 2 or 3, G1

E ðpÞ ¼ GL2ðZpÞ if and only if
GEðpkÞ is not conjugate to a subgroup of one of the groups
listed in Table A4.

The following table summarizes the genus of the modular
curves of the form XG and whether or not the modular
curve has infinitely many points:

The main goal of our project is to characterize the excep-
tional and adically-exceptional types of non-CM elliptic
curves defined over Q:

Let E be a non-CM elliptic curve defined over Q: Let S +
SE be a subset of the set of exceptional primes for E and
½6GEðpÞ : p 2 S% be the exceptional type associated to E
and S where we add –I to each component if it is not
already there. Let G + GL2ðZ=nZÞ be the group correspond-
ing to the type ½GEðpÞ : p 2 S%, where n is the product of
p 2 S (i.e. the level of ½GEðpÞ : p 2 S%). The group G satis-
fies 'I 2 G since we added –I to each GEðpÞ and detðGÞ ¼
ðZ=nZÞ, and as discussed before we can associate a modu-
lar curve XG. Using the correspondence established in
Section 2, there exist a non-CM elliptic curve with mod p
image in 6GEðpÞ for all p 2 S exactly when there exists a
non-cuspidal, non-CM rational point in XGðQÞ: The case of
adically-exceptional types is equivalent. We are primarily
interested in those groups G coming from (adically-)excep-
tional types such that #XGðQÞ ¼ 1: That is, when XG is a
genus 0 curve with a rational point, i.e. XGðQÞ ’ P1ðQÞ, or
XG is an elliptic curve defined over Q with positive rank
over Q: Although this is our primary interest, in this paper
we build the basis to finalize the characterization of the
(adic-)types that can occur for non-CM elliptic curves over
Q, as well as the combinations of primes that can be (adi-
cally-)exceptional for a given non-CM elliptic curve E=Q:
This project will have a second component [17].

Let G be a group in Table A1 such that #XGðQÞ<1:
Thanks to Corollary 22 we know that Serre’s constant is an
invariant of the "Q-isomorphism class. For each non-CM

j-invariant j0, it is enough to take one elliptic curve E=Q
with jE ¼ j0 and then compute the set SE of exceptional
primes. Zywina [43] gave an algorithm to compute SE and
combined with his classification in Table A1 allow us to
determine the exceptional type of the "Q-isomorphic class of
E. We can compute the set of adically-exceptional primes
S1E in an analogous manner. Then we obtain that the pos-
sible (adically-)exceptional types are the ones that appear in
Table A5. Assuming Conjecture 3 and Strong Uniformity
gives that Table A5 is complete.

Let p be prime, after the above sieve, we have 29 groups
G of the form GEðpÞ (see Table A1) and 5 of the form
GEðpkÞ for k # 2 (Table A4) such that 'I 2 G and
#XGðQÞ ¼ 1: Moreover, all those curves have genus 0,
except for G ¼ 11Nn, that is an elliptic curve with positive
rank. Of these 34 images that occur for infinitely many
"Q-isomorphism classes, there levels are broken down in the
following table.

4.1. Pairs of non-surjective Galois representations

For the remainder of this section any group G is one of the
above 34 groups. In the next sections we treat separately the
cases of exceptional primes and adically-exceptional primes.
Note that we are trying to characterize the complete set of
possible combination of mod p Galois representations, but
in the p-adic case we are only interested up to conjugation
of a subgroup of a maximal group in GL2ðZpÞ:

4.1.1. Exceptional pairs
Let E=Q be a non-CM elliptic curve with two distinct excep-
tional primes p< q and let Gp ¼ GEðpÞ and Gq ¼ GEðqÞ:
The next sieve comes from the classification of rational n-
cyclic isogenies given by Mazur and Kenku (cf. [25–28, 34])
and torsion structure given by Mazur (cf. [33]). For the spe-
cial case of a non-CM elliptic curve E=Q we have:

* if E has a cyclic n-isogeny, then n 2 f1, . . . , 13, 15, 16,
17, 18, 21, 25, 37g, and

* EðQÞtors 2 fZ=mZ : m ¼ 1, . . . , 10, 12g [ fZ=2Z!Z=
2mZ : m ¼ 1, . . . , 4g:

Using the above classifications, we can immediately elim-
inate some pairs G1, G2. For example, any combinations of
groups G5 + 5B and G7 + 7B can be eliminated, since such
an elliptic curve would have a 35-isogeny. After using these
results to eliminate combinations of groups that would vio-
late these classifications, we are left with 206 possible pairs
to consider. For each of these possibilities, we compute the
corresponding group G + GL2ðZ=pqZÞ, and we compute
the genus of the corresponding modular curve XG group
theoretically (see [41, Lemma 2.4]). Note that XG ¼

Genus XG G ¼ G1
E ðpÞ

#XGðQÞ<1 > 1 3B13S4, 37B.8.1, 37B.8.2; pNn, p # 17
1 7Ns.3.1, 11B.10.4, 11B.10.5, 17B.4.2,

17B.4.6

#XGðQÞ ¼ 1 1 11Nn
0 otherwise

Level 2 3 4 5 7 8 9 11 13

# of groups 3 4 2 9 6 2 1 1 6
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XGp,P1XGq , the fiber product:

Therefore,

XGðQÞ ¼ fðRp,RqÞ 2 XGpðQÞ , XGqðQÞ : jGpðRpÞ ¼ jGqðRqÞg:

The simplest case is that the modular curves associated to
the groups Gp and Gq both have genus 0. That is Gp,Gq 6¼
11Nn: In this case, both curves XGp and XGq are isomorphic
to P1 and an equation of the fiber product XG is just the
numerator of jGpðxÞ'jGqðyÞ ¼ 0: This model for this curve is
usually singular, but give an initial model to work with in
order to classify all the rational points.

The next case we considered is when, say Gq ¼ 11Nn: In
[42, §4.5.5], Zywina gives polynomials AðxÞ,BðxÞ,CðxÞ in
Z½x% such that an elliptic curve E has GEð11Þ conjugate to a
subgroup of 11Nn exactly when the polynomial j2EAðxÞ þ
jEBðxÞ þ CðxÞ has a rational root, where jE denotes the j-
invariant of E. Thus, in order to construct a plane curve
model for the modular curve that parameterizes elliptic
curves over whose image mod p image is conjugate to a sub-
group of Gp and whose mod 11 image is conjugate to a sub-
group of 11Nn can consider the curve given by the
equation jGpðyÞ

2AðxÞ þ jGpðyÞBðxÞ þ CðxÞ ¼ 0:
The largest genus that occurs in this computation is

genus 246, and of the 206 curves 141 of these curves have
genus less than 20. The counts of genus curves are listed in
the table below.

Here we point out that the genus of the modular curve
XG can be computed without ever computing a model for
the curve. This is because the genus of XG can be computed
by counting elliptic points and cusps on XG (see [19,
Theorem 3.1.1] for example) which can be done using just
G. The code for the computation of the genus of these
curves was taken from [41].

We obtain the following data depending on the genus of
the fiber product:

* Genus 0: For each of the genus 0 curves we are able to
compute the j-maps and thus completely classify all of
the elliptic curves with those exceptional types. This data
can be found in Table A6 and the corresponding param-
etrization to obtain the fine moduli in Table A7.

* Genus 1: For the 25 genus 1 curves (see Table A8) there
are 24 elliptic curves and 1 curve that does not have a
single rational point. Of the 24 elliptic curves, 20 have

rank 0 and 4 have positive rank. For the curves with
rank 0, we compute all of the rational points and their
corresponding j-invariants to see that only 6 curves have
points that correspond to non-CM elliptic curves. These
curves, their points and representatives of the corre-
sponding non-CM "Q-isomorphism classes can be found
in Table A11 and the finitely many elliptic curves that
correspond to the fine moduli in Table A12. Lastly, the
modular curves that are genus 1 and have positive rank
we give the j-maps and the Cremona label for the corre-
sponding model in Table A9 (except for the case
[3Nn,5S4], see Section 5).

* Genus 2: For each of the genus 2 curves the rank of their
jacobian have rank 0 or 1, then we can apply Chabauty
to obtain all the rational points. We have obtained that
all the rational points, if there are, correspond to CM j-
invariants. This data can be found in Table A13.

* Genus > 2: There are 155 curves of genus > 2. For the
corresponding groups, there are 28 maximal groups.
Now, thanks to the non-constant morphism XG ! XG0

when G + G0, we have that it is enough to compute the
rational points of the curves corresponding to these 28
curves. First, we checked for CM-points and then we
have looked for points of bounded height. For the cases
that Gi 6¼ 11Nn, i¼ 1, 2 with bound 106, otherwise with
bound 100 or until the computer used more than 50GB
of memory. In all those maximal curves we have not
found any non-CM rational point. For each type we add
a subscript indicating the genus of the corresponding
modular curve, a superscript of cm when the only points
we have found correspond to elliptic curves with CM or
a superscript of ; in the case that we have not found any
rational point. This data can be found in Table A14.

4.1.2. Adically-exceptional pairs
In the case of p-adic Galois representations, our objective in
this paper is only to characterize the possible combinations
of maximal p-adic images. That is up to conjugation of a
subgroup of a maximal group in GL2ðZpÞ:

Let E=Q be an elliptic curve with at least one adically-
exceptional prime p such that p is not exceptional. That is
G1
E ðpÞ 6¼ GL2ðZpÞ and GEðpÞ ¼ GL2ðZ=pZÞ: Therefore G1 ¼

G1
E ðpÞ is conjugate to a subgroup of one of the groups listed

in Table A4. Now, let q 6¼ p a prime and G2 ¼ G1
E ðqÞ one

of the groups in Table A1 such that the corresponding
modular curve has infinitely many points or in Table A4
such that it is maximal. All those groups in Table A4
are maximal, meanwhile the maximal groups in Table A1
are 2B, 2Cn, 3B, 3Nn, 5B, 5Nn, 5S4, 7B, 7Nn,
7Ns, 11Nn and 13B.3 Let G1 ¼ G1

E ðpÞ and G2 ¼ G1
E ðqÞ:

Similar to the exceptional case at Section 4.1.1, for each of
these possibilities, we compute the corresponding group G +
GL2ðZ=pkqZÞ, the genus and a model of the corresponding

g 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 19 # 20

# Curves of
genus g

12 25 14 15 12 8 5 9 7 7 2 2 4 5 4 3 1 6 65

3One might expect to see 3Ns and 5Ns on this list of groups, but due to the
unique characteristics of 3 and 5 these groups are in fact not maximal. One
can check that in these cases, 3Nsˆ3Nn and 5Nsˆ5S4:
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modular curve XG. In this case we obtain 54 curves, and the
largest genus is 111. Note that for these computations we
have not made the cases when G1 and G2 belong to Table
A1, since those computations have been done in the previ-
ous section. The counts of genus curves are listed in the
table below.

We obtain the following data depending on the genus of
the fiber product:

* Genus 0: Similar to the Section 4.1.1 although in this
case we do not consider the fine moduli spaces. The data
can be found in Table A6.

* Genus 1: There are 15 genus 1 curves (see Table A8),
only 2 of them without rational points. For the remain-
ing elliptic curves there are 8 with rank 0 and 5 with
positive rank, and the corresponding data appear in
Tables A9 and A11 respectively.

* Genus 2: There are 6 genus 2 curves. One of them has
not any rational point, 4 have jacobian with rank 0 or 1
and then we obtain all their rational points applying
Chabauty. The remaining curve is the modular curve
associated to the pair [4X7,5Nn] whose jacobian has
rank 2. Then in order to obtain its rational points we
apply 2-cover descent and elliptic Chabauty. This compu-
tation has been realized with the help of Xavier Xarles.
Let C be the following hyperelliptic model associated to
the modular curve corresponding to the pair [4X7 5Nn]:

C : y2 ¼ f ðxÞ, f ðxÞ ¼ ðx'2Þðx2 þ 1Þð4x3 ' 4x2 þ 3x ' 2Þ:

First, we do a point search to find all easily visible points
and we compute that in projective coordinates

S1 :¼ f 0 : 62 : 1½ %, 3=4;650=4 : 1½ %, 2 : 0 : 1½ %,
1 : 62 : 0½ %g + CðQÞ:

Our purpose is to prove CðQÞ ¼ S1: Let us determine an
unramified two covering w : D ! C defined over Q such
that the associated covering collection wd : Dd ! C satisfies
that any rational point P 2 CðQÞ on the curve lifts to one of
the covers DdðQÞ: The idea is to factorize the polynomial
f(x) as the product of two polynomials (over some number
field K) of even degree. Let be f ðxÞ ¼ f1ðxÞf2ðxÞ, where
f1ðxÞ, f2ðxÞ 2 K½x% for some number field K. We get the sub-
covers E1 : y21 ¼ f1ðxÞ and E2 : y22 ¼ f2ðxÞ and the unramified
two covering w : D ! C,wðx0, y1, y2Þ ¼ ðx0, y1y2Þ where D :
fy21 ¼ f1ðxÞ, y22 ¼ f2ðxÞg :

Now if we can determine DdðQÞ we determine CðQÞ,
since DdðQÞ maps to fP 2 Edi ðKÞ : xðPÞ 2 P1ðQÞg: Finally,
in order to determine which of those points correspond to
points in CðQÞ we only have to determine which points in
xðEdi ðKÞÞ \ P1ðQÞ lift to CðQÞ, for any of the
two subcovers.

Let be K ¼ QðaÞ where a is a root of the polynomial
gðxÞ ¼ 4x3'4x2 þ 3x'2 then we choose the following fac-
torization of the polynomial f(x):

f1ðxÞ ¼ ðx'2Þðx'aÞ,
f2ðxÞ ¼ ðx2 þ 1Þð4x2 þ 4ða'1Þxþ ð4a2'4aþ 3Þ:

We could have chosen other factorizations over other num-
ber fields, but this one works for our purpose. Now, in
order to compute the (finite) set T of twists necessary to
cover all the rational points we compute the Fake 2-Selmer
group of C=Q (see [11]). This can be done by the Magma
function TwoCoverDescent. We check that all the pos-
sible twists come from the points in the set S1: let d 2 T ,
then d ¼ f2ðx0Þ 2 K.=K.2 for x0 the x-coordinate of an
affine point in S1; and d¼ 1. Note that f2ð3=4Þ 2 K2:
Therefore, we have obtained T ¼ f1g [ ff2ðx0Þ : x0 2
f0, 2gg: For any d 2 T we have that rankZðEd2ðKÞÞ<3, then
we can apply Elliptic Chabauty to the covering x : Ed2 ! P1,
to obtain the set CðQÞ: The following tables illustrates the
data obtained for each d the corresponding point in P1ðQÞ :

Therefore, we finish with CðQÞ ¼ S1:

* Genus > 2: Similar to the case in Section 4.1.1: the data
can be found in Table A14. But in this case, we have
found some non-CM rational points:
* j ¼ 335 75=27 in the modular curve of genus 3 asoci-

ated to [8X5,7Ns]. But this j-invariant corresponds
to [8X5,7Ns.3.1] (see Table A5).

* j ¼ '2237534393 in the modular genus 6 curve associ-
ated to the pair [4X7,9XE].

5. Proof of the Theorem 17, Theorem 19, Corollary
18, and Corollary 20

We have discussed previously that our computations allow
us to compute the genus of the modular curves obtained as
the fiber product of modular curves arising from pairs of
non-surjective (mod p or p-adic) Galois representations. In
particular, such a curve can have infinitely many non-CM
points and non-cusps if and only if it has genus 0 with
some rational point, or it is an elliptic curve with positive
rank. Apart from the case with a single group (see Tables
A1, A2, and A4), we have obtained the following:

* Genus 0: For each curve of genus 0 we check that it has
a rational point. See Tables A6 and A7 for all those pos-
sible pairs.

g 0 1 2 3 4 6 7 8 10 13 14 18 26 40 54 111

# Curves of
genus g

10 15 6 7 2 2 3 1 1 1 1 1 1 1 1 1

d 1 a2'aþ 3=4 5a2 þ 5aþ 55=4

xðPÞ 2 P1ðQÞ, P 2 Ed2ðKÞ [3/4:1], [1:0] [0:1] [2:1]
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* Genus 1: There are 40 modular curves of genus 1 associ-
ated to pairs of mod p and p-adic non-surjective repre-
sentations. From them, the 9 elliptic curves of positive
rank appear in Table A8. Note that the cases [8X5,3Nn]
and [3Nn,5S4] do not appear at Theorems 17 and 19.
In the following paragraphs we describe the reasons that
we can discard those cases:

* [8X5,3Nn]: Let E be the modular curve associated to
[8X5,3Nn]. In this case, E=Q is the elliptic curve with
Cremona label 576a3 and has j-map equal to jðxÞ ¼
8x3 where ðx, yÞ 2 EðQÞ: Now let 8X17 be the group

&
1 0
2 1

' (
,

1 0
0 7

' (
,

1 1
0 5

' ()
ˆ8X5ˆGL2ðZ=8ZÞ:

The modular curve associated to the (nonmaximal)
exceptional pair [8X17,3Nn] is the elliptic curve E0=Q
with Cremona label 576a1. The j-map E0 is equal to
j0ðxÞ ¼ 8 x3þ32

x2

* +3
where ðx, yÞ 2 E0ðQÞ: As the Cremona

labels indicate, there is an isogeny u : E0 ! E defined by

uðx, yÞ ¼ x3 þ 32
x2

,
x3y'64y

x3

' (
,

of degree 3. A simple calculation shows that j0ðx, yÞ ¼
jðuðx, yÞÞ and thus ImðjÞ ¼ Imðj0Þ: Because of the rela-
tionship between these two groups and the j-maps of these
modular curves, any elliptic curve that have potentially
G1
E ð2Þ conjugate to a subgroup of 8X5 and G1

E ð3Þ conju-
gate to a subgroup of 3Nn must have (smaller) images:
G1
E ð2Þ conjugate to 8X17. Further, 8X17 is a subgroup of

2B and so the mod 2 Galois representation was already
non-surjective. Thus, there are no elliptic curves of exact
type [8X5,3Nn] despite the fact that EðQÞ contains infin-
itely many points.

* [3Nn,5S4]: Similarly, the exact type [3Nn,5S4] does
not actually occur for any elliptic curves overQ despite the
fact that the modular curve corresponding to this type has
infinitely many rational points. This is again because the
modular curves for [3Nn,5S4] and [3Nn,5Ns] are iso-
genous elliptic curves and their j-maps are related in the
same way as the curves above. The group 5Ns is a proper
subgroup of 5S4 and thus every elliptic curve coming from
a rational point on the modular curve for [3Nn,5S4] also
comes from a point on the modular curve for the smaller
type [3Nn,5Ns]. In this case themodular curve associated
to [3Nn,5S4] has Cremona label 225a2 and for
[3Nn,5Ns] is 225a1. These elliptic curves both have
rank 1 and are 3-isogenous to each other.

To summarize the above two cases, any elliptic curve of
type [8X5,3Nn] (resp. [3Nn,5S4]) must also be of smaller
type [8X17,3Nn] (resp. [3Nn,5Ns]). So, there are no
elliptic curves of exact adic type [8X5,3Nn] (resp. exact
type [3Nn,5S4]) as all the curves of these types much have
strictly smaller exact (adic-)type.

We also point out that we know that there are infinitely
many elliptic curves whose image is conjugate to the groups
listed in Table A2 since [42] give explicit 1-parameter

families of elliptic curves with images exactly equal to each
group outside of a thin set.

We are now ready to prove Corollary 18

Proof of Corollary 18. The proof of this corollary breaks down
into two cases. Given a group G + GL2ðZ=nZÞ with n square
free satisfying 'I 2 G and detðGÞ ¼ ðZ=nZÞ,, from Faltings’
Theorem [23] there can only be infinitely many "Q-isomorph-
ism classes of elliptic curves over Q of type G if the corre-
sponding modular curve XG is genus 0 with a rational point or
if it is an elliptic curve with positive rank overQ:

For the first case, assume XG ’ P1 over Q: Under the
assumption of uniformity, we may assume that p divides n
if and only if there exists some elliptic curve over Q for
which p is exceptional. This is because if p did not already
divide n, we can lift the group G to be a subgroup of
GL2ðZ=pnZÞ by taking its preimage under the standard
reduction map. This process does not affect the modular
curve XG or its moduli interpretation.

By [42, Lemma 3.5] we have that there are infinitely many
"Q-isomorphism classes of elliptic curves with 6GEðnÞ conju-
gate to G. For each of these "Q-isomorphism classes, the curves
in them cannot have any additional exceptional primes by the
assumption that any prime that could potentially be excep-
tional (under the assumption of uniformity) is already
accounted for since it divides n. Thus, for each of the infinitely
many "Q-isomorphism classes of elliptic curves guaranteed to
exist by [42, Lemma 3.5], Remark 14 ensures that there is at
least one Q-isomorphism class with image exactly G.

Finally, assume that the corresponding modular curve XG

has genus 1 and positive rank. For every p dividing n let
Gp ¼ ppðGÞ where pp : GL2ðZ=nZÞ ! GL2ðZ=pZÞ is the
standard component wise reduction map. Then every point
in XGðQ) corresponds to a "Q-isomorphism class of elliptic
curves with type [Gp : p dividing n].

Suppose that E has type [Gp : p dividing n] but its exact
type is not [Gp : p dividing n]. Then at least one of the fol-
lowing must be true:

* The level of the type of E is larger than n.
* There is a prime p that divides n such that GEðpÞ is con-

jugate to a proper subgroup of Gp.

From the assumption of uniformity, we know that there are
only finitely many primes p such that p-n and there are elliptic
curves defined over Q that are exceptional at p. Of these finitely
many primes p, there are only finitely many ways that an elliptic
curve E=Q can be of the type associated to G and exceptional at
p. The modular curves corresponding to each of these possibil-
ities are shown to all have genus greater than 1 or to be genus 1
with rank 0 in Section 4. Therefore, there can only be finitely
many "Q-isomorphism classes of elliptic curve of type G, but
exact type of level larger than that of G.

Next, checking every possible subtype shows that the are
only 2 types whose corresponding modular curves are of
genus 1 and have positive rank over Q that also have a sub-
type with a genus 1 positive rank corresponding modular
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curve. Those types are [8X5,3Nn] and [3Nn,5S4] and we
dealt with these at the beginning of Section 5. w

Since we do not require that the types be exact in
Corollary 20, the result follows from the genus and rank
computation that we have described in this section as well
as an argument similar to that of the proof of Corollary 18.

Now for a given (adic-)type to occur for infinitely many
"Q-isomorphism classes of elliptic curves it must be that the cor-
responding moduli space is genus 0 with a rational point or an
elliptic curve with positive rank over Q: This is sufficient to
conclude that there are infinitely many "Q-isomorphism classes
of elliptic curves of exact (adic)-type thanks once again to [42,
Lemma 3.5]. Calculating all the possibilities gives the lists that
appear in part (A) of Theorems 17 and 19 and the proof of
Corollary 18 shows that the list in Theorem 17 part (A) is in
fact complete. Further, a similar analysis of the computations
completes the proof of Theorem 19.

In fact, with a further computation, we can prove the fol-
lowing lemma as well.

Lemma 23. There are no (adically-)exceptional types of
length 3 such that there exist infinitely many non-isomorphic
classes of non-CM elliptic curves over Q:

Proof. Let us suppose that there is a type of length 3 of the
form ½G1,G2,G3% such that there exist infinitely many non-iso-
morphic classes of non-CM elliptic curves over Q with that
type. In order for this to be the case it must be that all the sub-
types of length 2, ½Gi,Gj%, occur for infinitely many "Q-iso-
morphism classes of elliptic curves. Looking for all the
possibilities in all the pairs at (A) in Theorems 17 and 19 we
have that the unique possibility is [3Nn,5B,2B]. The modular
curve associated to [3Nn,5B,2B] is equivalent to the fiber
product of X3Nn and X10B ¼ X0ð10Þ: This modular curve4 has
genus 2 and an hyperelliptic model is C : y2 ¼ x6'18x3 þ 1:
Since its jacobian has rank 0 we can apply Chabauty to obtain
all the rational points. We have obtained that all the rational
points correspond to cusps. Therefore, there not exist any tri-
ples ½G1,G2,G3% of exceptional types or adically-exceptional
types such that there exist infinitely many non-isomorphic
classes of non-CM elliptic curves overQ of that type. w

In order to complete the proof of Theorem 10 we still need
to justify that there are infinitely many distinct "Q-isomorphism
classes of elliptic curves defined over Q with Serre’s constant
corresponding to the levels of all the modular curves associated
to the types that appear in Tables A6, A7, and A9. We have jus-
tified already that all the others appear, but there is a subtlety
that still needs to be sorted out with 104. While we have seen
that there are infinitely many "Q-isomorphism classes of elliptic
curves of type [8X4,13B] since the modular curve correspond-
ing to [8X4,13B] is genus 1 of positive rank. It is possible that
for all but finitely many of these "Q-isomorphism classes the
mod 2 or mod 4 image is not actually surjective while still being
contained inside 8X4. Therefore, all but finitely many of these
curves might have smaller Serre’s constant (either 26 or 52). We

start by showing that if E=Q has type [8X4,13B], then the
mod 2 Galois representation associated to E must be surjective.
Since having mod 8 image contained in the group associated to
8X4 corresponds to having DðEÞ ¼ '2t2 for some t 2 Q we
know that the only way that E could have non-surjective mod 2
image would be for E to have a rational point of order 2. This,
of course, is impossible for an elliptic curve of type [8X4,13B]
since any such curve already has a 13-isogeny and there are no
elliptic curves over Q with a 26-isogeny. Lastly, using the data-
base in [36] we see that in order for an elliptic curve to have sur-
jective image mod 2, be of type [8X4,13B], and to not have
surjective image mod 4 is for the mod 4 image to be contained
in the group associated to 4X7. This would mean that E also
has type [4X7,13B], but our computations show that the
modular curve corresponding to [4X7,13B] is genus 3 and so
there can be at most finitely many such "Q-isomorphism classes.
Thus, there must be infinitely many curves with Serre’s constant
104 and we have completed the proof of Theorem 10. That is,
A1 is the set consisting of the levels of all the modular curves
associated to the types that appear in Tables A6, A7, and A9.

To finish our project, we still need to complete the classifica-
tion of possible (adic-)types and Serre’s constant. To do this we
fix our attention to the associated modular curves with finitely
many rational points. That is, genus 1 and rank 0, or genus>1:

* Genus 1 and rank 0: There are 28 elliptic curves of rank
0. Only 8 have points that correspond to non-CM elliptic
curves. All the data appears in Tables A11 and A12. The
case [4X7,3B] does not appear in that table:
* The modular curve associated to the type [4X7,3B] is

the elliptic curve E=Q with Cremona label 48a6 and
with Mordell-Weil group EðQÞ ’ Z=8Z: These points
give the non-CM j-invariants j1 ¼ '33 ( 113=22 and
j2 ¼ 32 ( 233=26: Now, let j(t) be the j-map (see Table
A6) of the genus 0 modular curve associated to the type
[4X3,3B]. Therefore jð'1=2Þ ¼ j1 and jð'1Þ ¼ j2:
Therefore, there are no elliptic curves with type
[4X7,3B] as any curve with this combination of images
actually has smaller images [4X20,3B]. Here 4X7
refers to the level 4 group X20 in the notation of [36].

* Genus¼ 2:We have computed all the rational points of all the
modular curves of genus 2. In all the cases we have not
obtained non-CM elliptic curves, except in the
case [4X7,7B]:
* The associated modular curve to the type [4X7,7B]

has genus 2 and we have computed all its rational
points. In this case, the non-CM nonsingular j-invari-
ants are j1 ¼ 33 13=22 and j2 ¼ '33 ( 13 ( 4793=214 (see
Table A13). That corresponds to evaluating the j-map
of the genus 0 modular curve associated to the type
[4X3,7B] at the values 7/2 and 2 respectively.
Therefore, any elliptic curve E with those j-invariants
satisfies that G1

E ð2Þ is conjugate to a subgroup of 4X3
and 4X7, and G1

E ð7Þ is conjugate to a subgroup of 7B.
* Genus > 2: We did a point search to find all easily vis-

ible points of bounded heigh. We have found only non-
CM, non-cusps in the modular curve associated to the

4A remarkable fact is that this genus 2 curve is new modular of level 90 and
its jacobian is Q-isogenous to the product of two elliptic curves (see [2]).
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types [8X5,7Ns] and [4X7,9XE]. But the case
[8X5,7Ns] does not appear at the statement:

* The corresponding modular curve to the type
[8X5,7Ns] has genus 3 and searching for points of
height less than or equal to 106 yields only one non-
CM nonsingular j-invariant, j ¼ 33 ( 5 ( 75=27 (see
Table A14) that corresponds to the unique j-invariant
for the case GEð7Þ labeled as 7Ns.3.1 (see Table A1).

The above proves (B) of Theorems 17 and 19.

Example 24. Let E be the elliptic curve given by Weierstrass
equation y2 þ xyþ y ¼ x3'126x'552: This curve has
Cremona reference 50a1, it does not have CM and according
to LMFDB [31], GEð3Þ ¼ 3B:1:2,GEð5Þ ¼ 5B:1:3, and
GEðpÞ ¼ GL2ðZ=pZÞ for every other prime p. Checking the 2-
adic representation in [31] (which uses the data collected in
[36]) we see that the image of qE, 21 is the pullback of the
group 8X4 under the standard reduction map p : GL2ðZ2Þ !
GL2ðZ=8ZÞ: So, the 2-adic representation associated to E is
not surjective and A(E) ¼ 120. Here we point out that if we let
pk : GL2ðZ=8ZÞ ! GL2ðZ=2kZÞ be the standard component
wise reduction map for k ¼ 1, and 2, then p1ðHÞ ¼
GL2ðZ=2ZÞ and p2ðHÞ ¼ GL2ðZ=4ZÞ where H ¼ G1

E ð2Þ:
Therefore, qE, 2 and qE, 4 are both surjective. The modular
curve whose points correspond to elliptic curves with these
mod 3, 5, and 8 images is genus greater than 1, so there are
only finitely many "Q-isomorphism classes of elliptic curves
with this particular combination of images. Moreover, since
we have obtained all the rational points at the modular curve
associated to [3B,5B] we are done.

Remark 25. In fact, we can check that for the four j-invari-
ants coming from the modular curve [3B,5B] have that the
image of qE, 21 is the pullback of the group 8X4. Similarly,
with [3B,7B] and 8X4; and [3B,5S4] with 8X3. In par-
ticular this completes the computation of all the points on
the modular curves associated to [4X3,3B,5S4],
[8X4,3B,5B] and [8X4,3B,7B].

Therefore, we have obtained all the possible j-invariants
for the item (B) at Theorems 17 and 19, except (maybe) the
type [4X7,9XE]. The modular curve associated to the for-
mer case has genus 6. In this article we have not tried to
compute all the rational points of such a curve. This will be
done in an ongoing project [17].

Appendix A: Tables

In this section, we give tables of data that summarize the
results that we used in our computations as well as the data
that we collected. Tables A1, A2, and A3 are taken from the
results in [42] where Zywina does a search for all possible
images of the mod p representations associated to non-CM
elliptic curves over Q and then computes the moduli spaces
for the ones that actually occur. Throughout [42] Zywina is
careful to distinguish between subgroup of GL2ðZ=pZÞ that
do and do not contain –I. This is because if E and E0 are
quadratic twists of each other then we do not necessarily
know that GEðpÞ ¼ GE0ðpÞ: In this case all that can be said is

that hGEðpÞ,'Ii ¼ hGE0ðpÞ,'Ii: Therefore, if G +
GL2ðZ=pZÞ contains –I, then GEðpÞ + G if and only if
GE0ðpÞ + G, while if 'I 62 G then it is possible that GEðpÞ +
G and GE0ðpÞ 6+ G: Combining this with the fact that two
non-CM elliptic curves E=Q and E0=Q are "Q-isomorphic if
and only if they are quadratic twists of each other, we have
that the moduli spaces associated to groups containing –I are
completely determined by a j-map and are coarse moduli
spaces (see Table A1). On the other hand, the moduli spaces
associated to groups that do not contain –I are called fine
moduli spaces and are given by elliptic surfaces such that
each nonsingular specialization is a representative of a Q-iso-
morphism class with the given type (see Table A3). We have
included these three tables for the sake of completeness.

There are places in the tables where the polynomials that need
to be written are too complicated to fit in the space provided. In
those cases, we simplify the entry by defining some notation for
factors of the polynomials. The extra data is then presented at the
end of the Appendix A organized by table number.

Below we give a description of each of the tables:

* Table A1: For each possible groups GEðpÞ 6¼ GL2ðZ=pZÞ
with 'I 2 GEðpÞ we give Sutherland’s and Zywina’s labels,
the level, generators, the (possibly constant) j-maps, and
the Cremona label of an elliptic curve with minimal con-
ductor with mod p image equal to the given group.

* Table A2: For each possible group GEðpÞ 6¼ GL2ðZ=pZÞ with
'I=2GEðpÞ we give Sutherland’s and Zywina’s labels, the level,
generators, and the Cremona label of an elliptic curve with
minimal conductor with mod p image equal to the
given group.

* Table A3: For each possible group GEðpÞ 6¼ GL2ðZ=pZÞ with
'I=2GEðpÞ we give an elliptic curve model for the fine moduli.

* Table A4: For each group GEðpkÞ with k # 2 that surjects
onto GL2ðZ=pZÞ we give the level, generators j-map, and
the Cremona label of an elliptic curve with minimal con-
ductor with p-adic image equal to the given group.

* Table A5: For each group in Table A1 that only has
finitely many "Q-isomorphism classes, we check if the
corresponding j-invariants are in the image of the j-map
of other modular curves. The results of this checking are
compiled in this table.

* Table A6: For each exceptional type ½GEðpÞ,GEðqÞ% such
that GEðpÞ and GEðqÞ contain –I and the corresponding
modular curve has genus 0 we give the j-map associated
to the curve and the Cremona label of an elliptic curve
with minimal conductor and that type. We do the same
thing for maximal adically exceptional types.

* Table A7: For each exceptional type ½GEðpÞ,GEðqÞ% such
that GEðpÞ and GEðqÞ with –I not in one of the groups
such that the corresponding modular curve has genus 0
we give the parametrization to obtain a fine moduli asso-
ciated to the curve and the Cremona label of an elliptic
curve with minimal conductor and that type.

* Table A8: For each exceptional type such that the corre-
sponding modular curve is genus 1 we give the Cremona
reference of the modular curve as well as the structure of
the Mordell-Weil group of the modular curve in the case
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of the curve is elliptic, otherwise we show a reason why
does not have rational points. We do the same thing for
maximal adically-exceptional types.

* Table A9: For each modular curve in Table A8 with positive
rank, except [8X5,3Nn] and [3Nn,5S4] (see §5), we give
the j-map, Cremona reference of the modular curve, and the
Cremona reference of an elliptic curve with minimal con-
ductor (if this is less than 400.000) and that (adic-)type.

* Table A10: For each modular curve in Table A9 with
positive rank such that the examples of minimal con-
ductor are greater than 400000 and thus does not have a
page in the LMFDB, we give a minimal model of an
elliptic curve with that (adic-)type and its conductor.

* Table A11: For each modular curve in Table A8 with
rank 0 and –I in both groups we give a complete list of
the j-invariants that correspond to all the "Q-isomorphic
classes with that (adic-)type, and the Cremona labels of
examples of elliptic curves with that combination of rep-
resentations of minimal conductor.

* Table A12: For each modular curve in Table A8 with
rank 0 and –I not in both groups we give a complete list
of the Cremona labels of all elliptic curves with that
(adic-)type.

* Table A13: For each possible (adic-)type whose curve has
genus 2 we give a complete list of non-cusps and rational
points and their corresponding elliptic curves j-invariants.

* Table A14: We give a list of the modular curves that one
would classify all the non-cusps and rational points in

order to prove Conjecture 12 under the assumption of uni-
formity. For each type we add a subscript indicating the
genus of the corresponding modular curve, a superscript
of cm when the only points we have found correspond to
elliptic curves with CM or a superscript of ; in the case
that we have not found any rational point. For all those
curves we have found only CM and/or cusps, or nothing
in the modular curve associated to those types except for
the pair [4X7,9XE], where we have found the j-invariant
j ¼ '2237534393: For this j-invariant we have checked that
does not appear neither for types in Table A1 nor in Table
A4. Assuming that for the remaining curves those are all
the points we are done to prove Conjecture 12 under the
assumption of uniformity, since the set of types that
appear at Table A14 corresponds to a set of maximal
groups that cover all the possible (adically-)exceptional
pairs. Note that if G0 + G then there exists a non-constant
morphism XG0 ! XG and if we prove that XGðQÞ only cor-
responds to cusps and CM j-invariants, then XG0ðQÞ corre-
sponds to cusps and CM j-invariants.

* Table A15: We give examples of elliptic curves with a
given (adic-) type whose modular curves have genus
greater than one and whose points correspond to elliptic
curves that do not appear in the LMFDB.

Remark 26. All the Magma [10] code to compute the tables
in this Appendix A is available in the online supplement
[16]. Some of the code for this paper was taken from [18].

Table A1. Groups GE pð Þ containing – I, for non-CM elliptic curves E=Q:

Sutherland Zywina Level Generators j-map Example

2Cs G1 2 256 t2þtþ1ð Þ3

t2 tþ1ð Þ2
15a1

2B G2 2 1 1
0 1

' (
256 tþ1ð Þ3

t
15a4

2Cn G3 2 0 1
1 1

' (
t2 þ 1728 392b1

3Cs G1 3 2 0
0 2

' (
,

1 0
0 2

' (
27 tþ1ð Þ3 tþ3ð Þ3 t2þ3ð Þ3

t3 t2þ3tþ3ð Þ3
175b2

3Ns G2 3 2 0
0 2

' (
,

0 2
1 0

' (
,

1 0
0 2

' (
27 tþ1ð Þ3 t'3ð Þ3

t3
1210d1

3B G3 3 2 0
0 2

' (
,

1 0
0 2

' (
,

1 1
0 1

' (
27 tþ1ð Þ tþ9ð Þ3

t3
175b1

3Nn G4 3 1 0
0 2

' (
,

2 1
2 2

' (
t3 245a1

5Cs.4.1 G1 5 4 0
0 4

' (
,

1 0
0 2

' (
t20þ228t15þ494t10'228t5þ1ð Þ3

t5 t10'11t5'1ð Þ5
99d2

5Cs G2 5 2 0
0 3

' (
,

1 0
0 2

' (
t2þ5tþ5ð Þ3 t4þ5t2þ25ð Þ3 t4þ5t3þ20t2þ25tþ25ð Þ3

t5 t4þ5t3þ15t2þ25tþ25ð Þ5
18176b2

5Ns.2.1 G3 5 2 0
0 3

' (
,

0 1
3 0

' (
54t3 t2þ5tþ10ð Þ3 2t2þ5tþ5ð Þ3 4t4þ30t3þ95t2þ150tþ100ð Þ3

t2þ5tþ5ð Þ5 t4þ5t3þ15t2þ25tþ25ð Þ5
6975a1

5Ns G4 5 0 4
1 0

' (
,

2 0
0 3

' (
,

1 0
0 2

' (
tþ5ð Þ3 t2'5ð Þ3 t2þ5tþ10ð Þ3

t2þ5tþ5ð Þ5
608b1

5B.4.2 G5 5 4 0
0 4

' (
,

2 0
0 1

' (
,

1 1
0 1

' (
t4þ228t3þ494t2'228tþ1ð Þ3

t t2'11t'1ð Þ5
99d3

5B.4.1 G6 5 4 0
0 4

' (
,

1 0
0 2

' (
,

1 1
0 1

' (
t4'12t3þ14t2þ12tþ1ð Þ3

t5 t2'11t'1ð Þ
99d1

5Nn G7 5 1 0
0 4

' (
,

2 3
4 2

' (
53 tþ1ð Þ 2tþ1ð Þ3 2t2'3tþ3ð Þ3

t2þt'1ð Þ5
675b1

5B G8 5 2 0
0 3

' (
,

1 0
0 2

' (
,

1 1
0 1

' (
52 t2þ10tþ5ð Þ3

t5
867c1

5S4 G9 5 0 3
3 4

' (
,

2 0
0 2

' (
,

3 0
4 4

' (
t3 t2 þ 5t þ 40ð Þ 648a1

7Ns.3.1 G1 7 3 0
0 5

' (
,

0 1
4 0

' (
33 ( 5 ( 75=27 2450a1

(continued)

EXPERIMENTAL MATHEMATICS 529



Table A1. Continued.

Sutherland Zywina Level Generators j-map Example

7Ns G2 7 0 6
1 0

' (
,

3 0
0 5

' (
,

1 0
0 3

' (
t tþ1ð Þ3 t2'5tþ1ð Þ3 t2'5tþ8ð Þ3 t4'5t3þ8t2'7tþ7ð Þ3

t3'4t2þ3tþ1ð Þ7
9225a1

7B.6.1 G3 7 6 0
0 6

' (
,

1 0
0 3

' (
,

1 1
0 1

' (
t2'tþ1ð Þ3 t6'11t5þ30t4'15t3'10t2þ5tþ1ð Þ3

t'1ð Þ7t7 t3'8t2þ5tþ1ð Þ
208d1

7B.6.3 G4 7 6 0
0 6

' (
,

3 0
0 1

' (
,

1 1
0 1

' (
t2'tþ1ð Þ3 t6þ229t5þ270t4'1695t3þ1430t2'235tþ1ð Þ3

t'1ð Þt t3'8t2þ5tþ1ð Þ7
208d2

7B.6.2 G5 7 6 0
0 6

' (
,

2 0
0 5

' (
,

1 1
0 1

' (
' t2'3t'3ð Þ3 t2'tþ1ð Þ3 3t2'9tþ5ð Þ3 5t2't'1ð Þ3

t3'2t2'tþ1ð Þ t3't2'2tþ1ð Þ7
5733d1

7Nn G6 7 1 0
0 6

' (
,

2 5
4 2

' (
64t3 t2þ7ð Þ3 t2'7tþ14ð Þ3 5t2'14t'7ð Þ3

t3'7t2þ7tþ7ð Þ7
15341a1

7B G7 7 3 0
0 5

' (
,

1 0
0 3

' (
,

1 1
0 1

' (
t2þ245tþ2401ð Þ3 t2þ13tþ49ð Þ

t7
338a1

11B.10.4 G1 11 10 0
0 10

' (
,

4 0
0 6

' (
,

1 1
0 1

' (
'112 1089f2

11B.10.5 G2 11 10 0
0 10

' (
,

5 0
0 7

' (
,

1 1
0 1

' (
'11 ( 1313 1089f1

11Nn G3 11 1 0
0 10

' (
,

3 5
8 3

' (
P11 x, yð Þ3

11yþ 2x2þ17x'34ð Þð Þ2 x'4ð Þy' 5x'9ð Þð Þ11
, y2 þ y ¼ x3'x2'7x þ 10 232544f1

13B.5.2 G1 13 5 0
0 8

' (
,

2 0
0 1

' (
,

1 1
0 1

' (
t2'tþ1ð Þ3P13 tð Þ3

t'1ð Þt t3'4t2þtþ1ð Þ13
2890d2

13B.5.1 G2 13 5 0
0 8

' (
,

1 0
0 2

' (
,

1 1
0 1

' (
t2'tþ1ð Þ3 t12'9t11þ29t10'40t9þ22t8'16t7þ40t6'22t5'23t4þ25t3'4t2'3tþ1ð Þ3

t'1ð Þ13 t13 t3'4t2þtþ1ð Þ
2890d1

13B.5.4 G3 13 5 0
0 8

' (
,

4 0
0 7

' (
,

1 1
0 1

' (
' 134 t2'tþ1ð Þ3 t4't3þ2t2'9tþ3ð Þ3 3t4'3t3'7t2þ12t'4ð Þ3 4t4'4t3'5t2þ3t'1ð Þ3

t3'4t2þtþ1ð Þ13 5t3'7t2'8tþ5ð Þ
216320i1

13B.4.2 G4 13 4 0
0 10

' (
,

2 0
0 1

' (
,

1 1
0 1

' (
t4't3þ5t2þtþ1ð Þ t8þ235t7þ1207t6þ955t5þ3840t4'955t3þ1207t2'235tþ1ð Þ3

t t2'3t'1ð Þ13
147c2

13B.4.1 G5 13 4 0
0 10

' (
,

1 0
0 2

' (
,

1 1
0 1

' (
t4't3þ5t2þtþ1ð Þ t8'5t7þ7t6'5t5þ5t3þ7t2þ5tþ1ð Þ3

t13 t2'3t'1ð Þ
147c1

13B G6 13 2 0
0 7

' (
,

1 0
0 2

' (
,

1 1
0 1

' (
t2þ5tþ13ð Þ t4þ7t3þ20t2þ19tþ1ð Þ3

t
2450bb1

13S4 G7 13 3 0
12 9

' (
,

2 0
0 2

' (
,

9 5
0 6

' (
24 (5(134 (173

313 ,' 212 (53 (11(134
313 or 218 (33 (134 (1273 (1393 (1573 (2833 (929

513 (6113
50700l1

17B.4.2 G1 17 4 0
0 13

' (
,

2 0
0 10

' (
,

1 1
0 1

' (
'17 ( 3733=217 14450bk1

17B.4.6 G2 17 4 0
0 13

' (
,

6 0
0 9

' (
,

1 1
0 1

' (
'172 ( 1013=2 14450bk2

37B.8.1 G1 37 8 0
0 14

' (
,

1 0
0 2

' (
,

1 1
0 1

' (
'7 ( 113 1225e1

37B.8.2 G2 37 8 0
0 14

' (
,

2 0
0 1

' (
,

1 1
0 1

' (
'7 ( 1373 ( 20833 1225e2

Table A2. Groups GEðpÞ not containing – I, for non-CM elliptic curves E=Q:

Sutherland Zywina Model Example

3B.1.1 H3, 1 E3, 3 19a3
3B.1.2 H3, 2 E'3

3, 3 19a2

3Cs.1.1 H1, 1 E3, 1 or E'3
3, 1

19a1

5B.1.1 H6, 1 E5, 6 11a3
5B.1.2 H5, 1 E5, 5 11a2
5B.1.3 H5, 2 E5

5, 5 75a1

5B.1.4 H6, 2 E5
5, 6 75a2

5Cs.1.1 H1, 1 E5, 1 11a1
5Cs.1.3 H1, 2 E5

5, 1 275b2

7B.1.1 H3, 1 E7, 3 26b1
7B.1.2 H5, 2 E'7

7, 5 637a1

7B.1.3 H4, 1 E7, 4 26b2
7B.1.4 H4, 2 E'7

7, 4 294a1

7B.1.5 H5, 1 E7, 5 637a2
7B.1.6 H3, 2 E'7

7, 3 294a2

7B.2.1 H7, 2 E'7
7, 7 338b1

7B.2.3 H7, 1 E7, 7 338b2
7Ns.2.1 H1, 1 E7, 1 or E'7

7, 1 2450ba1

11B.1.4 H1, 1 E11, 1 121a2
11B.1.5 H2, 1 E11, 2 121a1
11B.1.6 H2, 2 E'11

11, 2 121c2

(continued)
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Table A4. Maximal groups G1
E pð Þ, for non-CM elliptic curves E=Q and p¼ 2, 3.

Type level generators j-map Example

4X3 4 3 3
0 1

' (
,

0 1
3 1

' (
't2 þ 1728 567a1

4X7 4 0 1
3 0

' (
,

0 1
1 1

' (
'4t3 t þ 8ð Þ 216a1

8X4 8 7 7
0 1

' (
,

5 0
1 1

' (
'2t2 þ 1728 216a1

8X5 8 5 5
0 1

' (
,

0 1
1 1

' (
2t2 þ 1728 1682b1

9XE 9 4 5
4 4

' (
,

4 8
8 6

' (
37 t2'1ð Þ3 t6þ3t5þ6t4þt3'3t2þ12tþ16ð Þ3 2t3þ3t2'3t'5ð Þ

t3'3t'1ð Þ9
1944c1

Table A5. Modular curves: isolated point.

Type j-invariants Examples

[4X3,11B.10.4] '112 1089h1
[4X3,11B.10.5] '11 ( 1313 1089h2
[8X5,7Ns.3.1] 33 ( 5 ( 75=27 2450a1

Table A2. Continued.

Sutherland Zywina Model Example

11B.1.7 H1, 2 E'11
11, 1 121c1

13B.3.1 H5, 1 E13, 5 147b1
13B.3.2 H4, 1 E13, 4 147b2
13B.3.4 H5, 2 E13

13, 5
24843o1

13B.3.7 H4, 2 E13
13, 4 24843o2

Table A3. Elliptic curve model for the fine moduli.

E3, 1 : y2 ¼ x3'3ðt þ 1Þðt þ 3Þðt2 þ 3Þx'2ðt2'3Þðt4 þ 6t3 þ 18t2 þ 18t þ 9Þ
E3, 3 : y2 ¼ x3'3ðt þ 1Þ3ðt þ 9Þx'2ðt þ 1Þ4ðt2'18t'27Þ

E5, 1 : y2 ¼ x3'27ðt20 þ 228t15 þ 494t10'228t5 þ 1Þx þ 54ðt30'522t25'10005t20'10005t10 þ 522t5 þ 1Þ
E5, 5 : y2 ¼ x3'27ðt4 þ 228t3 þ 494t2'228t þ 1Þx þ 54ðt6'522t5'10005t4'10005t2 þ 522t þ 1Þ
E5, 6 : y2 ¼ x3'27ðt4'12t3 þ 14t2 þ 12t þ 1Þx þ 54ðt6'18t5 þ 75t4 þ 75t2 þ 18t þ 1Þ

E7, 1 : y2 ¼ x3'5373x'5472106
E7, 3 : y2 ¼ x3'27ðt2't þ 1Þðt6'11t5 þ 30t4'15t3'10t2 þ 5t þ 1Þx þ 54Q7, 3ðtÞ
E7, 4 : y2 ¼ x3'27ðt2't þ 1Þðt6 þ 229t5 þ 270t4'1695t3 þ 1430t2'235t þ 1Þx þ 54Q7, 4ðtÞ
E7, 5 : y2 ¼ x3'27 ( 7ðt2'3t'3Þðt2't þ 1Þð3t2'9t þ 5Þð5t2't'1Þx'54 ( 72Q7, 5ðtÞ
E7, 7 : y2 ¼ x3'27ðt2 þ 13t þ 49Þ3ðt2 þ 245t þ 2401Þx þ 54ðt2 þ 13t þ 49Þ4ðt4'490t3'21609t2'235298t'823543Þ

E11, 1 : y2 ¼ x3'27 ( 114x þ 54 ( 115 ( 43
E11, 2 : y2 ¼ x3'27 ( 113 ( 131x þ 54 ( 114 ( 4973
E13, 4 : y2 ¼ x3'27ðt4't3 þ 5t2 þ t þ 1Þ3P13, 4ðtÞx þ 54ðt2 þ 1Þðt4't3 þ 5t2 þ t þ 1Þ4Q13, 4ðtÞ
E13, 5 : y2 ¼ x3'27ðt4't3 þ 5t2 þ t þ 1Þ3P13, 5ðtÞx þ 54ðt2 þ 1Þðt4't3 þ 5t2 þ t þ 1Þ4Q13, 5ðtÞ

Table A6. Modular curves of genus 0.

Type j-maps Example

[2B,3B] ð11t'8Þ3ð1259t3'2856t2þ2112t'512Þ3

2ðt'1Þt6ð3t'2Þ3ð25t'16Þ2
80b1

[2B,3Cs] ' ð54t3'1Þ3ð54t3'54t2'1Þ3ð2916t6þ2916t5þ2916t4'108t3'54t2þ1Þ3

729t6ð3tþ1Þ6ð6t'1Þ3ð9t2'3tþ1Þ6ð36t2þ6tþ1Þ3
98a3

[2B,3Nn] ðt3þ16Þ3
t3

1568d1

[2B,3Ns] ð1024t3þ1920t2þ768tþ115Þ3ð1024t3þ1920t2þ1200tþ223Þ3

46656ðtþ1Þ3ð4tþ1Þ3ð16tþ7Þ6
726a1

[2B,5B] ' ð5t6'2080t5þ81920t4'1310720t3þ10485760t2'41943040tþ67108864Þ3

8ðt'8Þ5 t10ð5t'32Þ2
768b1

[2B,5B.4.1] P1ðtÞ3

590490000000000t10ð3788tþ1Þ5ð3818tþ1Þ10ð3848tþ1Þ5ð14118064t2þ7516tþ1Þð14690764t2þ7666tþ1Þ2
198e1

[2B,5B.4.2] ' P2ðtÞ3

4t2ð2t'1Þ2ð4t'1Þð4t2þ2t'1Þ10ð16t2'12tþ1Þ5
198e3

[2Cn,3B] 9ðt2þ3Þðt2þ27Þ3
t6

196a1

[2Cn,5S4] ð3t2þ1Þ3ð64t4þ11t2þ1Þ
t10

1444a1

[2Cn,7B] ð7t2'tþ1Þð7t2þtþ1Þð2401t4þ245t2þ1Þ3
t2

1922e1

(continued)
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Table A6. Continued.

Type j-maps Example

[2Cs,3B] ð7t2þ6tþ3Þ3ð127t6þ738t5þ1605t4þ1260t3þ345t2þ18tþ3Þ3

4ðt'1Þ6t2ðtþ1Þ6ðtþ3Þ2ð3tþ1Þ6ð5tþ3Þ2
150c2

[3Nn,5B] ð3125t6þ250t3þ1Þ3
t3

1369e1

[4X3,3B] ' 9ðt2'2t'26Þ3ðt2'2t'2Þ
ðt'1Þ6

242a1

[4X3,5S4] ð3t2'1Þ3ð64t4'11t2þ1Þ
t10

324b1

[4X3,7B] ' ðt4'245t2þ2401Þ3ðt4'13t2þ49Þ
t14

1369c2

[4X7,3Nn] ' ð32t3þ1Þ3
64t12

80802b1

[8X4,3B] ' 9ðt2'2t'53Þ3ðt2'2t'5Þ
2ðt'1Þ6

1296k2

[8X4,5S4] 2ð3t2'2Þ3ð32t4'11t2þ2Þ
t10

4232d1

[8X4,7B] ' ð49t4'26t2þ4Þð2401t4'490t2þ4Þ3
128t2

162c3

[8X5,3B] 9ðt2þ6Þðt2þ54Þ3
2t6

7938d1

[8X5,5S4] 2ð3t2þ2Þ3ð32t4þ11t2þ2Þ
t10

16200e1

[8X5,7B] ð49t4þ26t2þ4Þð2401t4þ490t2þ4Þ3
128t2

12482f2

Table A7. Modular curves of genus 0: Fine Moduli Spaces.

Type Model Parametrization Example

[2B,3B.1.1] E3, 3 512ðt'1Þð3t'2Þ3
t3ð25t'16Þ

14a4

[2B,3B.1.2] E'3
3, 3

14a3

[2B,3Cs.1.1] E3, 1 or E'3
3, 1 ' ð6t'1Þ3ð36t2þ6tþ1Þ3

432t3ð3tþ1Þ3ð9t2'3tþ1Þ3
14a1

[2B,5B.1.1] E5, 6 ð3788tþ1Þ5ð3848tþ1Þ5ð14118064t2þ7516tþ1Þ
388800000t5ð3818tþ1Þ5ð14690764t2þ7666tþ1Þ

66c1

[2B,5B.1.4] E5
5, 6 150b3

[2B,5B.1.2] E5, 5 ' ð4t'1Þð16t2'12tþ1Þ5

32tð2t'1Þð4t2þ2t'1Þ5
66c3

[2B,5B.1.3] E5
5, 5 150b1

[2Cn,3B.1.1] E3, 3 3ðt4'54t2'243Þ
t3

196b1

[2Cn,3B.1.2] E'3
3, 3 196b2

[2Cn,7B.2.1] E'7
7, 7 ' 823543t8þ235298t6þ21609t4þ490t2'1

t
1922c1

[2Cn,7B.2.3] E7, 7 1922c2

[2Cs,3B.1.1] E3, 3 ' ðtþ3Þð3tþ1Þ3

32tðtþ1Þ3
30a2

[2Cs,3B.1.2] E'3
3, 3

30a6

Table A8. Modular curves of genus 1.

Type E=Q EðQÞ
[2B,5Nn] 50b1 Z=5Z
[2B,5Ns] 50b1 Z=5Z
[2B,5S4] 50b2 Z=5Z
[2Cn,13B] 52a1 Z=2Z
[2Cn,13B.4.1] 52a2 Z=2Z
[2Cn,13B.4.2] 52a2 Z=2Z
[2Cn,3Cs] 36a3 Z=2Z
[2Cn,3Nn] 36a3 Z=2Z
[2Cn,3Ns] 36a4 Z=2Z
[2Cn,5B] 20a3 Z=2Z
[2Cn,5B.4.1] 20a4 Z=2Z
[2Cn,5B.4.2] 20a4 Z=2Z
[2Cn,5Nn] Non Elliptic: EðQ5Þ ¼ ;
[2Cs,3Nn] 36a1 Z=6Z
[2Cs,3Ns] 36a1 Z=6Z
[3B,5B] 15a1 Z=2Z!Z=4Z
[3B,5B.4.1] 15a3 Z=2Z!Z=4Z
[3B,5B.4.2] 15a3 Z=2Z!Z=4Z
[3B,5S4] 75c1 Z=5Z
[3B,7B] 21a1 Z=2Z!Z=4Z

(continued)
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Table A8. Continued.

Type E=Q EðQÞ
[3Nn,5Nn] 225a1 Z
[3Nn,5Ns] 225a1 Z
[3Nn,5S4] 225a2 Z
[3Nn,7Nn] 441b1 Z=3Z!Z
[3Ns,5B] 15a3 Z=2Z!Z=4Z
[4X3,3Nn] 144a3 Z=2Z
[4X3,13B] 208c1 Z=2Z
[4X3,5B] 80b3 Z=2Z
[4X3,5Nn] Non Elliptic: EðQ5Þ ¼ ;
[4X7,3B] 48a6 Z=8Z
[4X7,5B] 80a4 Z=4Z
[4X7,5S4] 400h1 Z
[8X4,3Nn] 576e3 Z=2Z
[8X4,5B] 320f4 Z=2Z!Z
[8X4,5Nn] Non Elliptic: EðQ2Þ ¼ ;
[8X4,13B] 832h2 Z=2Z!Z
[8X5,3Nn] 576a3 Z=2Z!Z
[8X5,5B] 320c4 Z=2Z
[8X5,5Nn] 1600g2 Z=2Z!Z
[8X5,13B] 832d2 Z=2Z

Table A9. Modular elliptic curve with positive rank.

Type j-maps E=Q Example

[3Nn,5Nn] 125ðxyþ4x'y2þ4Þðxy'12xþ2y2'8y'12Þ3F1ðx, yÞ3

F2ðx, yÞ5
225a1 Table A10

[3Nn,5Ns] ' ðy'2Þ3ðy2þyþ4Þ3ðy2þ6yþ4Þ3

ðy2þy'1Þ5
225a1 Table A10

[3Nn,7Nn] ð7xyþ28x'2y2'30yþ59Þ3F3ðx, yÞ3F4ðx, yÞ3F5ðx, yÞ3

F6ðx, yÞ7
441b1 Table A10

[4X7,5S4] G1ðx, yÞ
1024

400h1 12996c1

[8X4,5B] ' ðx2'470xþ5225Þ3

2ðxþ15Þ5
320f4 6400b1

[8X4,13B] ' ðx2'2xþ28Þðx4'478x3þ7688x2'38328xþ149808Þ3

2ðxþ4Þ13
832h2 20736c1

[8X5,5Nn] 8000G2ðx, yÞ
ðx2'86x'151Þ10

1600g2 313600bz1

Table A10. Examples out of LMFDB: Genus XG ¼ 1.

Type Example NQðEÞ
[3Nn,5Nn] y2 ¼ x3 þ x2 þ 1218089157x þ 10584902461321 50840066816
[3Nn,5Ns] y2 ¼ x3'1419330328x þ 20580980954064 1774432
[3Nn,7Nn] y2 ¼ x3'x2'439163751869x þ 112018153929262517 1541679392

Table A11. Modular elliptic curves with rank 0: Coarse moduli.

Type j-invariants Examples

[3B,5B] [3B,5B.4.1] f'5 ( 293=25, 5 ( 2113=215g 400c3, 400c4
[3B,5B.4.2] f'52=2, '52 ( 2413=23g 400c1, 400c2

[3B,5S4] f'24 ( 32 ( 133, 24 ( 33g 1296i1, 1296i2
[3B,7B] f'32 ( 53 ( 1013=221, '33 ( 53 ( 3833=27, 33 ( 53=2, '32 ( 56=23g 1296k4, 1296k3, 1296k1, 1296k2
[3Ns,5B] f113=23, '293 ( 413=215g 338e1, 338e2
[4X7,5B] f'52 ( 413=22, 5 ( 593=210g 14450bj1, 14450d1

Table A12. Modular elliptic curves with rank 0: Fine moduli.

Type All curves

[3B,5B.1.1] 50b1,50b2
[3B,5B.1.2] 50b3,50b4
[3B,7B.2.1] 7938u3, 7938u4
[3B,7B.2.3] 7938u1, 7938u2
[3B.1.1,5B.1.3] 50a1
[3B.1.1,5B.1.4] 50a3
[3B.1.1,5B.4.1] 450b4
[3B.1.1,5B.4.2] 450b2
[3B.1.1,5S4] 324b1,324d1
[3B.1.1,7B] 162c1,162c3
[3B.1.1,7B.2.1] 162b1
[3B.1.1,7B.2.3] 162b3
[3B.1.2,5B.1.3] 50a2

(continued)
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Table A12. Continued.

Type All curves

[3B.1.2,5B.1.4] 50a4
[3B.1.2,5B.4.1] 450b3
[3B.1.2,5B.4.2] 450b1
[3B.1.2,5S4] 324b2,324d2
[3B.1.2,7B] 162c2, 162c4
[3B.1.2,7B.2.1] 162b2
[3B.1.2,7B.2.3] 162b4

Table A13. Modular curves of genus 2.

Type Rank Non-cuspidal points j-invariants

[2B,5Ns.2.1] 0 ; –
[2B,7Nn] 0 ð'4, 3Þ, ð1=2, 3Þ 2633

ð'1, 0Þ 0
ð32,'1Þ 2333113

[2Cn,5Ns] 0 ð0,'2Þ 2633

[2Cn,7B.6.1] 0 ; –
[2Cn,7B.6.2] 0 ; –
[2Cn,7B.6.3] 0 ; –
[2Cs,5S4] 0 ð1, 3Þ, ð'2, 3Þ, ð'1=2, 3Þ 2633

[3B,5Nn] 0 (1, 1) 243353

ð'1=9, 1=2Þ '2153 53

ð'9,'1=2Þ, ð'9,'1Þ 0
ð'1,'1=2Þ, ð'1,'1Þ

[3Nn,13B] 0 ; –
[3Nn,5B.4.1] 0 ; –
[3Nn,5B.4.2] 0 ; –
[3Nn,7B] 0 (255, 7) 3353173

ð'15,'7Þ '3353

[3Ns,5S4] 1 ð1=3,'8Þ, ð'9,'8Þ '215

ð'1, 0Þ, ð3, 0Þ 0

[5S4,7B] 0 ; –
[2Cn,9XE] 0 ; –
[4X3,9XE] 0 ; –
[4X7,5Nn] 2 ð40, 1=2Þ '2153 53

ð'440, 3=5Þ '2153353113

ð120,'3=2Þ '2183353

ð'16008,'21=13Þ '2183353233293

ð0,'1Þ, ð0,'1=2Þ 0
ð'8,'1=2Þ, ð'8,'1Þ

[4X7,7B] 1 ð'3=2,'49=4Þ 3313=22

ð'479=16,'4Þ '3313 4793=214

[8X4,9XE] 0 ; –
[8X5,9XE] 2 CðQ3Þ ¼ ; –

Table A14. Remaining maximal modular curves of genus > 2.

½2B,7Ns%cm3 ½2Cn,7Nn%cm3 ½2Cn,7Ns%;3 ½3Nn,7Ns%cm3 ½3Ns,5Nn%cm3 ½4X3,7Nn%cm3 ½4X3,7Ns%;3
½4X7,13B%;3 ½8X4,7Nn%cm3 ½8X4,7Ns%;3 ½8X5,7Nn%cm3 ½8X5,7Ns%3 ½3Nn,5Cs%;4 ½3Nn,5Ns:2:1%cm4
½5S4,13B%;4 ½4X7,7Nn%cm4 ½9XE,2B%cm4 ½3B,7Nn%cm5 ½5Nn,7B%cm5 ½3B,7Ns%cm6 ½3Ns,7Nn%cm6
½5B,7Nn%;6 ½4X7,7Ns%cm6 ½4X7,9XE%6 ½2Cn,11Nn%cm7 ½3Nn,11Nn%cm7 ½5S4,7Nn%cm7 ½4X3,11Nn%cm7
½8X4,11Nn%cm7 ½8X5,11Nn%cm7 ½2B,11Nn%cm8 ½9XE,5S4%cm8 ½5B,7Ns%;9 ½5Nn,13B%;9 ½5S4,7Ns%cm9
½9XE,5B%;10 ½5Nn,7Nn%cm13 ½4X7,11Nn%cm13 ½3B,11Nn%cm14 ½9XE,7B%;14 ½5Nn,7Ns%cm18 ½9XE,5Nn%cm18
½5S4,11Nn%cm19 ½5B,11Nn%;20 ½7Nn,13B%;20 ½9XE,13B%;26 ½7Ns,13B%;27 ½7B,11Nn%;32 ½5Nn,11Nn%cm38
½9XE,7Nn%cm40 ½9XE,7Ns%cm54 ½11Nn,13B%;56 ½7Nn,11Nn%cm81 ½9XE,11Nn%cm111 ½7Ns,11Nn%cm112

Table A15. Examples out of LMFDB: Genus XG>1:

Type j-invariant Example Conductor

[4X7,9XE] '2237534393 y2 ¼ x3'1126035x þ 459913278 701784
13S4 ' 212(53 (11(134

313
y2 þ y ¼ x3 þ x2'7653878762768x þ 8080142566037338385 374369283576145574257827

218 (33 (134 (1273 (1393 (1573 (2833 (929
513 (6113

y2 þ y ¼ x3'53690013976669148x þ 4788368560731534924873003 528531611786945
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Extra information: Polynomials for some of the tables:

* Table A1:

P11ðx, yÞ ¼ ðx2 þ 3x' 6Þð11ðx2 ' 5Þyþ ð2x4 þ 23x3 ' 72x2 ' 28x þ 127ÞÞð6yþ 11x' 19Þð22ðx' 2Þyþ ð5x3 þ 17x2 ' 112xþ 120ÞÞ
P13ðtÞ ¼ t12 þ 231t11 þ 269t10 ' 3160t9 þ 6022t8 ' 9616t7 þ 21880t6 ' 34102t5 þ 28297t4 ' 12455t3 þ 2876t2 ' 243t þ 1

* Table A3:

Q7, 3ðtÞ ¼ t12 ' 18t11 þ 117t10 ' 354t9 þ 570t8 ' 486t7 þ 273t6 ' 222t5 þ 174t4 ' 46t3 ' 15t2 þ 6t þ 1

Q7, 4ðtÞ ¼ t12 ' 522t11 ' 8955t10 þ 37950t9 ' 70998t8 þ 131562t7 ' 253239t6 þ 316290t5 ' 218058t4 þ 80090t3 ' 14631t2 þ 510t þ 1

Q7, 5ðtÞ ¼ ðt4 ' 6t3 þ 17t2 ' 24t þ 9Þð3t4 ' 4t3 ' 5t2 ' 2t ' 1Þ ð9t4 ' 12t3 ' t2 þ 8t ' 3Þ
P13, 4ðtÞ ¼ t8 þ 235t7 þ 1207t6 þ 955t5 þ 3840t4 ' 955t3 þ 1207t2 ' 235t þ 1

P13, 5ðtÞ ¼ t8 ' 5t7 þ 7t6 ' 5t5 þ 5t3 þ 7t2 þ 5t þ 1

Q13, 4ðtÞ ¼ t12 ' 512t11 ' 13079t10 ' 32300t9 ' 104792t8 ' 111870t7 ' 419368t6 þ 111870t5 ' 104792t4 þ 32300t3 ' 13079t2 þ 512t þ 1

Q13, 5ðtÞ ¼ t12 ' 8t11 þ 25t10 ' 44t9 þ 40t8 þ 18t7 ' 40t6 ' 18t5 þ 40t4 þ 44t3 þ 25t2 þ 8t þ 1

* Table A6:

P1ðtÞ ¼ 9289670605927434230887788667927350765223936t12 þ 29278270369999901950955093380872504213504t11

þ 42292791583476109342488555094120464384t10 þ 37025228725171770917082043542364160t9

þ 21878993767277277183859380817920t8 þ 9193668584402084086752989184t7 þ 2816901155195900104390656t6

þ 634096368731743520256t5 þ 104078307564875520t4 þ 12147786424640t3 þ 957045024t2 þ 45696t þ 1

P2ðtÞ ¼ 65536t12'4063232t11 þ 16777216t10'28958720t9 þ 27832320t8'16576512t7

þ 6385664t6'1608192t5 þ 261120t4'25920t3 þ 1376t2'32t þ 1

* Table A9:

F1ðx, yÞ ¼ 53x2y2'232x2yþ 272x2 þ 17xy3'372xy2 þ 504xyþ 544xþ 2y4'56y3 þ 468y2 þ 736yþ 272

F2ðx, yÞ ¼ 11x2y2'24x2y'16x2'xy3'44xy2 þ 8xy'32x'y4 þ 8y3 þ 76y2 þ 32y'16

F3ðx, yÞ ¼ 28x2y2'266x2y'1169x2 þ 14xy3'126xy2 þ 378xy'5180x'5y4'52y3 þ 1032y2 þ 2612y'5711

F4ðx, yÞ ¼ 28x2y2 þ 77x2yþ 203x2'7xy3'280xy2'189xyþ 875xþ y4 þ 30y3 þ 509y2'542yþ 956

F5ðx, yÞ ¼ 14x2y2'133x2yþ 616x2 þ 7xy3'210xy2 þ 385xyþ 2947xþ 2y4'38y3 þ 185y2 þ 1758yþ 3529

F6ðx, yÞ ¼ 7x3y3 þ 329x3y2'448x3y'4207x3'21x2y4'42x2y3'1575x2y2'1554x2y'28749x2 þ 147xy4þ

294xy3 þ 3822xy2 þ 3675xy'65268xþ y6'4y5'565y4'260y3 þ 20710y2 þ 11170y'49223

G1ðx, yÞ ¼ 'x10'210x9'20x8y'7085x8'1440x7y'72280x7'25904x6y'262770x6'150880x5y'650220x5'323320x4y

'2073650x4'703840x3y'3299800x3'1393200x2y'4157325x2'1015200xy'4799250x'580500y'1454625

G2ðx, yÞ ¼ x20 þ 1260x19'56x18yþ 42870x18'13456x17yþ 403100x17 þ 440168x16yþ 1335852085x16

'121312128x15y'61881358352x15'1307723360x14yþ 6615621682760x14 þ 89306042944x13y

'160467247908880x13'47113584888416x12yþ 4865894105161650x12 þ 2738042048551808x11y

þ387841608615974760x11'171889581774911248x10y'31426480449116277436x10þ

6725955511078796960x9yþ 1497426397985497774920x9'223160321487761337552x8y'

47343303309980334099710x8 þ 4384140813703797518208x7yþ 1177623302292232438580400x7þ

23859921698214377667616x6y'18020700523192267143943480x6'3625628171475452791902656x5y'

91886854155885171733697488x5 þ 78452198711443613319043360x4yþ

5946599171665206805434677005x4'1229423961196759128856211328x3y'

57315101050144284752075165940x3 þ 3544228211661585891755479432x2yþ

2147304967678389238737065757750x2 þ 693493926872718537524755967344xyþ

51452457690608652712058018333180xþ 4183073553838029267128981247656yþ

223823753822802307667379753623561
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