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ON THE TORSION OF RATIONAL ELLIPTIC CURVES

OVER QUARTIC FIELDS

ENRIQUE GONZÁLEZ-JIMÉNEZ AND ÁLVARO LOZANO-ROBLEDO

Abstract. Let E be an elliptic curve defined over Q and let G = E(Q)tors
be the associated torsion subgroup. We study, for a given G, which possible
groups G ⊆ H could appear such that H = E(K)tors, for [K : Q] = 4 and H
is one of the possible torsion structures that occur infinitely often as torsion
structures of elliptic curves defined over quartic number fields.

Let K be a number field, and let E be an elliptic curve over K. The Mordell-Weil
theorem states that the set E(K) of K-rational points on E is a finitely generated
abelian group. It is well known that E(K)tors, the torsion subgroup of E(K), is
isomorphic to Z/nZ× Z/mZ for some positive integers n,m with n|m. In the rest
of the paper we shall write Cn = Z/nZ for brevity, and we call Cn ×Cm the torsion
structure of E over K.

The characterization of the possible torsion structures of elliptic curves has been
of considerable interest over the last few decades. Since Mazur’s proof [36] of Ogg’s
conjecture,1 and Merel’s proof [37] of the uniform boundedness conjecture, there
have been several interesting developments in the case of a number field K of fixed
degree d over Q. The case of quadratic fields (d = 2) was completed by Kamienny
[29], and Kenku and Momose [31] after a long series of papers. However, there is
no complete characterization of the torsion structures that may occur for any fixed
degree d > 2 at this time.2 Nevertheless, there has been significant progress to
characterize the cubic case [3, 23, 24, 27, 39, 50] and the quartic case [25, 26, 28, 40].
Let us define some useful notation to describe more precisely what is known for
d ≥ 2:

• Let S(d) be the set of primes that can appear as the order of a torsion point
of an elliptic curve defined over a number field of degree ≤ d.

• Let Φ(d) be the set of possible isomorphism torsion structures E(K)tors,
where K runs through all number fields K of degree d and E runs through
all elliptic curves over K.

• Let Φ∞(d) be the subset of isomorphic torsion structures in Φ(d) that occur
infinitely often. More precisely, a torsion structure G belongs to Φ∞(d) if
there are infinitely many elliptic curves E, non-isomorphic over Q, such
that E(K)tors � G.
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1See [47], which established all of the torsion structures over the rationals, for a discussion of

the authorship of this conjecture.
2See [48] for a very nice survey on the subject.
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Mazur established that S(1) = {2, 3, 5, 7} and

Φ(1) = {Cn | n = 1, . . . , 10, 12} ∪ {C2 × C2m | m = 1, . . . , 4} .
Kamienny, Kenku and Momose established that S(2) = {2, 3, 5, 7, 11, 13} and

Φ(2) = {Cn | n = 1, . . . , 16, 18} ∪ {C2 × C2m | m = 1, . . . , 6}
∪ {C3 × C3r | r = 1, 2} ∪ {C4 × C4} .

The elliptic curves with torsion structure Cn×Cm are parametrized by the modular
curve X1(n,m). In the cases of d = 1, 2, the corresponding modular curves for each
G ∈ Φ(d) have infinitely many points over the rationals and over quadratic fields,
respectively. Therefore, Φ∞(d) = Φ(d) for d = 1, 2.

The characterization of Φ(d) for d ≥ 3 is still open. Nevertheless, the uniform
boundedness theorem, proved by Merel (and made effective by Oesterlé, and later
by Parent [46]), states that there exists a constant B(d), that only depends on d,
such that |G| ≤ B(d), for all G ∈ Φ(d). Therefore, for a given d, only finitely many
groups can appear as torsion subgroups of elliptic curves over a number field of
degree d, that is, Φ(d) is finite for all d ≥ 1. For the case of cubic fields (d = 3)
there is recent progress [3, 50] to compute Φ(3).

The set S(d) is slightly better understood. Parent [45] has obtained S(3) and
Derickx, Kamienny, Stein and Stoll [7] have established the sets S(d) for d = 4, 5,
and 6. The set Φ∞(d) has been determined for d = 3, 4 by Jeon et al. [27,28], and
for d = 5, 6 by Derickx and Sutherland [8]. In particular,

Φ∞(3) = {Cn | n = 1, . . . , 16, 18, 20} ∪ {C2 × C2m | m = 1, . . . , 7, } ,

Φ∞(4) = {Cn | n = 1, . . . , 18, 20, 21, 22, 24} ∪ {C2 × C2m | m = 1, . . . , 9}
∪ {C3 × C3m | m = 1, 2, 3} ∪ {C4 × C4m | m = 1, 2}
∪ {C5 × C5} ∪ {C6 × C6} .

Recently, Najman [41] has found that the elliptic curve 162b1 (in Cremona’s no-
tation [6]) has torsion C21 over the cubic field Q(ζ9)

+. Therefore, Φ∞(3) � Φ(3).
However, we do not know of any such example for the case of quartic fields, so
it is not known whether Φ(4) = Φ∞(4). It is worth pointing out that the fact
that Φ(d) is finite together with the definition of Φ∞(d) implies that there are only
finitely many isomorphism classes of elliptic curves over cubic and quartic fields
such that their torsion subgroups are not isomorphic to one in the set Φ∞(3) or
Φ∞(4), respectively. This remark justifies the following definition:

• We define J(d) ⊂ Q as the finite set defined by the following property:
j ∈ J(d) if and only if there exists a number field K of degree d, and an
elliptic curve E/K with j(E) = j, such that E(K)tors is isomorphic to a
group in Φ(d) that is not in Φ∞(d). We denote by JQ(d) ⊂ Q the subset of
J(d) where we restrict to the case of elliptic curves E defined over Q.

Since Φ(d) = Φ∞(d) for d = 1, 2, it follows that J(1) = J(2) = ∅. Najman’s
example shows that −140625/8 ∈ JQ(3).

In the case of elliptic curves with complex multiplication, we denote by ΦCM(d)
the analogue of the set Φ(d) but restrict to elliptic curves with complex multiplica-
tion. The set ΦCM(1) was determined by Olson [43], the quadratic and cubic cases
by Zimmer et al. [14, 38, 44], and recently, Clark et al. [5] have computed the sets
ΦCM(d) for 4 ≤ d ≤ 13.
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In this paper we are interested in the question of how the torsion subgroup of
an elliptic curve grows when we enlarge the field of definition. In particular, we
consider elliptic curves defined over Q, base extend to a quartic field, and study the
growth in their torsion subgroup. For our purposes let us define the following sets:

• Let ΦQ(d) be the subset of Φ(d) such that H ∈ ΦQ(d) if there is an elliptic
curve E/Q and a number field K of degree d such that E(K)tors � H. We
define SQ(d) ⊆ S(d), and Φ∞

Q (d) ⊆ Φ∞(d), similarly.
• Let Φ�

Q(d) be the intersection of the sets ΦQ(d) and Φ∞(d).
• For each G ∈ Φ(1), let ΦQ(d,G) be the subset of ΦQ(d) such that E
runs through all elliptic curves over Q such that E(Q)tors � G. Also,
let Φ�

Q(d,G) = ΦQ(d,G) ∩ Φ∞(d).

Remark. It is important to notice that, a priori, Φ∞
Q (d) ⊆ Φ�

Q(d) = ΦQ(d)∩Φ∞(d)
can be distinct sets. The set Φ∞

Q (d) characterizes those torsion structures that
appear infinitely often for elliptic curves defined over Q, base extended to a degree d
number field. However, Φ�

Q(d) characterizes torsion structures that occur infinitely
often for elliptic curves defined over a degree d number field, and also occur for
elliptic curves defined over Q and base extended to some degree d number field, but
perhaps only for finitely many Q-rational j-invariants. As we shall prove in Theorem
1, we have Φ∞

Q (4) � Φ∗
Q(4) because C15 ∈ Φ∞(4) and C15 ∈ ΦQ(4), but C15 does not

belong to Φ∞
Q (4), i.e., there are only finitely many Q-isomorphism classes of elliptic

curves E/Q such that there is a quartic field K/Q with E(K)tors � C15.
Let us review what is known for SQ(d) and ΦQ(d). For d ≤ 4 we have:

SQ(1) = SQ(2) = {2, 3, 5, 7} and SQ(3) = SQ(4) = {2, 3, 5, 7, 13}.
Moreover, the set SQ(d) has been determined for d ≤ 42 by the second author [34],
together with a conjectural description for all d ≥ 1 that holds if Serre’s uniformity
question is answered positively. The sets ΦQ(d) have been completely described by
Najman [41] for d = 2, 3:

ΦQ(2) = {Cn | n = 1, . . . , 10, 12, 15, 16} ∪ {C2 × C2m | m = 1, . . . , 6}
∪ {C3 × C3r | r = 1, 2} ∪ {C4 × C4} ,

ΦQ(3) = {Cn | n = 1, . . . , 10, 12, 13, 14, 18, 21} ∪ {C2 × C2m | m = 1, . . . , 4, 7} .
Chou [4] has completed a first step to determine ΦQ(4) by classifying the possible

torsion structures that may occur over Galois quartic fields.3 Moreover, Chou splits
this classification depending on the Galois group of the quartic field. Let us denote
by ΦV4

Q (4) (resp. ΦC4

Q (4)) when the quartic field has Galois group isomorphic to the

Klein group V4 (resp. the cyclic group of order four, C4). Then [4, Theorem 1.3
and 1.4 ] shows that

ΦV4

Q (4) = {Cn | n = 1, . . . , 10, 12, 15, 16} ∪ {C2 × C2m | m = 1, . . . , 6, 8}
∪ {C3 × C3m | m = 1, 2} ∪ {C4 × C4m | m = 1, 2} ∪ {C6 × C6} ,

ΦC4

Q (4) = {Cn | n = 1, . . . , 10, 12, 13, 15, 16}
∪ {C2 × C2m | m = 1, . . . , 6, 8} ∪ {C5 × C5} .

3After this article was submitted, the sets ΦQ(d) were determined for d = 4 (using results from
this paper) by the first author and Najman [18], for d = 5 by the first author [15], for d = 7, and
if d is only divisible by primes > 7 by the first author and Najman [18].
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Our first result determines Φ�
Q(4) and Φ∞

Q (4).

Theorem 1. The set Φ�
Q(4) is given by

Φ�
Q(4)= {Cn | n = 1, . . . , 10, 12, 13, 15, 16, 20, 24} ∪ {C2 × C2m | m = 1, . . . , 6, 8}

∪ {C3 × C3m | m = 1, 2} ∪ {C4 × C4m | m = 1, 2} ∪ {C5 × C5} ∪ {C6 × C6} ,
and Φ∞

Q (4) = Φ�
Q(4) \ {C15}. In particular, if E/Q is an elliptic curve with j(E) /∈

JQ(4) (a finite subset of Q defined above), then E(K)tors ∈ Φ�
Q(4), for any number

field K/Q of degree 4. Moreover, if E/Q is an elliptic curve with E(K)tors � C15
over some quartic field K, then j(E) ∈ {−52/2, −52 · 2413/23,−5 · 293/25, 5 ·
2113/215}.

The set ΦQ(d) can be studied in more detail by analyzing the sets ΦQ(d,G) for
each G ∈ Φ(1). Indeed, note that by definition we have ΦQ(d) =

⋃
G∈Φ(1) ΦQ(d,G).

The sets ΦQ(d,G) have been calculated for d = 2, 3 in [19,20,33]. Our second result
determines Φ�

Q(4, G) for each G ∈ Φ(1).

Theorem 2. For each G ∈ Φ(1), the set Φ�
Q(4, G) is given in the following table:

G Φ�
Q (4, G)

C1 {C1 , C3 , C5 , C7 , C9 , C13 , C15 , C3 × C3 , C5 × C5 }

C2
{C2 , C4 , C6 , C8 , C10 , C12 , C16 , C20 , C24 , C2 × C2 ,
C2 × C4 , C2 × C6 , C2 × C8 , C2 × C10 , C2 × C12 ,
C2 × C16 , C3 × C6 , C4 × C4 , C4 × C8 , C6 × C6 }

C3 {C3 , C15 , C3 × C3 }

C4
{C4 , C8 , C12 , C16 , C24 , C2 × C4 , C2 × C8 ,

C2 × C12 , C2 × C16 , C4 × C4 , C4 × C8 }
C5 {C5 , C15 , C5 × C5 }
C6 {C6 , C12 , C24 , C2 × C6 , C2 × C12 , C3 × C6 , C6 × C6 }
C7 {C7 }
C8 {C8 , C16, C2 × C8 , C2 × C16 , C4 × C8 }
C9 {C9 }
C10 {C10 , C20 , C2 × C10 }
C12 {C12 , C24 , C2 × C12}

C2 × C2
{C2 × C2 , C2 × C4 , C2 × C6 , C2 × C8 ,
C2 × C12 , C2 × C16 , C4 × C4 , C4 × C8 }

C2 × C4 {C2 × C4 , C2 × C8 , C2 × C16 , C4 × C4 , C4 × C8 }
C2 × C6 {C2 × C6 , C2 × C12 }
C2 × C8 {C2 × C8 , C2 × C16 , C4 × C8 }

Further, for each G ∈ Φ(1), there is a finite set JQ(4, G) ⊂ Q of j-invariants such
that if E/Q is an elliptic curve with E(Q)tors � G and j(E) /∈ JQ(4, G), then
E(K)tors ∈ Φ�

Q(4, G), for any number field K/Q of degree 4.

The finite sets JQ(4) and JQ(4, G) satisfy JQ(4) =
⋃

G∈Φ(1) JQ(4, G). We finish

the introduction with the following remark: if it turns out that Φ(4) = Φ∞(4)
(equivalently, J(4) = ∅) or if JQ(4) = ∅, then our results would determine ΦQ(4)
and ΦQ(4, G) as well.

Corollary 3. If Φ(4) = Φ∞(4) or JQ(4) = ∅, then ΦQ(4) = Φ�
Q(4) and ΦQ(4, G) =

Φ�
Q(4, G) for any G ∈ Φ(1).
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1. Auxiliary results

We will use the Antwerp–Cremona tables and labels [1, 6] when referring to
specific elliptic curves over Q. The Q-rational points on the modular curves X0(N)
or, equivalently, the cyclic Q-rational isogenies of elliptic curves over Q, have been
described completely in the literature, for all N ≥ 1. One of the most important
milestones in their classification was [36], where Mazur dealt with the case when
N is prime. The complete classification of Q-rational points on X0(N), for any N ,
was completed due to work of Fricke, Kenku, Klein, Kubert, Ligozat, Mazur and
Ogg, among others (see [10, eq. (80)]; [11]; [12], [13, pp. 370-458]; [22, p. 1889];
[35]; [1]; [36]; [30]; or the summary tables in [34]).

Theorem 4. Let N ≥ 2 be a number such that X0(N) has a non-cuspidal Q-
rational point or, equivalently, let E/Q be an elliptic curve with a cyclic Q-rational
isogeny of degree N . Then:

(1) N ≤ 10, or N = 12, 13, 16, 18 or 25. In this case X0(N) is a curve of genus 0
and its Q-rational points form an infinite 1-parameter family, or

(2) N = 11, 14, 15, 17, 19, 21, or 27. In this case X0(N) is a curve of genus 1,
i.e., X0(N) is an elliptic curve over Q, but in all cases the Mordell-Weil group
X0(N)(Q) is finite, or

(3) N = 37, 43, 67 or 163. In this case X0(N) is a curve of genus ≥ 2 and (by
Faltings’ theorem) there are only finitely many Q-rational points.

Table 1 lists the relevant cases of the sets ΦCM(d) (i.e., d ≤ 7 [5, 14, 38, 43, 44])
that we will use in this article.

Table 1. ΦCM(d), for d ≤ 7.

d ΦCM(d)

1 {C1 , C2 , C3 , C4 , C6 , C2 × C2}
2 ΦCM(1) ∪ {C7 , C10 , C2 × C4 , C2 × C6 , C3 × C3 }
3 ΦCM(1) ∪ { C9 , C14 }
4 ΦCM(2) ∪ { C5 , C8 , C12 , C13 , C21 , C2 × C8 , C2 × C10 , C3 × C6 , C4 × C4 }
5 ΦCM(1) ∪ {C11 }
6 ΦCM(2) ∪ ΦCM(3) ∪ { C18 , C19 , C26 , C2 × C14 , C3 × C6 , C3 × C9 , C6 × C6 }
7 ΦCM(1)

Let E/Q be a non-CM elliptic curve. For each prime p, let ρE,p be the mod-

p Galois representation that describes the action of Gal(Q/Q) on the p-torsion
E[p] � Z/pZ ⊕ Z/pZ of E. Sutherland [49] and Zywina [51] have described all
known (and conjecturally all) proper subgroups of GL(2,Z/pZ) that occur as the
image of ρE,p up to conjugacy. In particular, Sutherland [49] gives for each Gp =

ρE,p(Gal(Q/Q)) � GL(2,Z/pZ) the following data:

d0: the index of the largest subgroup of Gp that fixes a linear subspace of E[p];
equivalently, the degree of the minimal extension L/Q over which E admits
a L-rational p-isogeny.
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Table 2. Image groups Gp = ρE,p(Gal(Q/Q)), for p = 3, 5, for
non-CM elliptic curves E/Q.

G3 d0 d1 d

3Cs.1.1 1 1 2
3Cs 1 2 4

3B.1.1 1 1 6
3B.1.2 1 2 6
3Ns 2 4 8
3B 1 2 12
3Nn 4 8 16

G5 d0 d1 d

5Cs.1.1 1 1 4
5Cs.1.3 1 2 4
5Cs.4.1 1 2 8
5Ns.2.1 2 8 16

5Cs 1 4 16
5B.1.1 1 1 20
5B.1.2 1 4 20

G5 d0 d1 d

5B.1.4 1 2 20
5B.1.3 1 4 20
5Ns 2 8 32

5B.4.1 1 2 40
5B.4.2 1 4 40
5Nn 6 24 48
5B 1 4 80
5S4 6 24 96

d1: is the index of the largest subgroup of Gp that fixes a non-zero vector in
E[p]; equivalently, the degree of the minimal extension L/Q over which E
has an L-rational point of order p.

d: is the order of Gp; equivalently, the degree of the minimal extension L/Q
for which E[p] ⊆ E(L).

Table 2 is extracted from Table 3 of [49], and it lists the values d0, d1, and d for
p = 3, and 5, for each possible image group Gp ⊆ GL(2,Z/pZ), where the groups
are labeled as in [49, §6.4].

In addition to Chou’s classification of ΦV4

Q (4) and ΦC4

Q (4) already described in
the introduction, we shall make use of the following result.

Proposition 5 ([4], Prop. 3.8). Let p ≡ 3 mod 4 be a prime with p ≥ 7. Let E/Q
be an elliptic curve and let K/Q be a quartic field such that E(K)tors contains a
point P of order p. Then, either:

• P is defined over Q, i.e., P ∈ E(Q)[p], or
• there is a subfield F ⊆ K, [F : Q] = 2 such that P ∈ E(F )[p].

We will also quote the following result of Najman.

Proposition 6 ([41], Lemma 5). Let F be a quadratic field, n an odd positive
integer, and E/Q an elliptic curve such that E(F ) contains Cn. Then E/Q has an
n-isogeny.

The determination of Φ∞
Q (4), Φ�

Q(4) and Φ�
Q(4, G) will rest on the following result.

Theorem 7. Let E/Q be an elliptic curve and K/Q a quartic number field such
that E(Q)tors � G and E(K)tors � H.

(1) If C2 ⊂ G, then C2 ⊂ H.
(2) 11 and 17 do not divide the order of H.
(3) C14, C2 × C14 /∈ ΦQ(4).
(4) C21 ⊂ H.
(5) If C4 ⊆ G, then C20 ⊂ H.
(6) If C8 ⊆ G, then C24 ⊂ H.
(7) If C2 × C2 ⊆ G, then C2 × C10 ⊂ H.
(8) If C2 × C4 ⊆ G, then C2 × C12 ⊂ H.
(9) If H = C6 × C6, then G = C2 or G = C6.
(10) If P ∈ E(K)[9], then there exists a subfield F � K such that P ∈ E(F )[9].
(11) If C18, C3 × C9 ⊂ H.
(12) If G = C3, then C9 ⊂ H.
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Remark. If in the statements (5)–(8) the quartic field K is replaced by a number
field such that 4 ≤ [K : Q] ≤ 7, then those statements still hold true. The reason
is that in the proofs of these statements in the non–CM cases we use that d1 ≤ 4,
but in fact in all those cases d1 ≤ 7 (here d1 is the quantity associated to ρE,p that
appears in Table 2). For the CM case, in the proof of (5) (resp. (6), (8)) we used
that C20 ⊆ H (resp. C24, C2×C12) is not a subgroup of one of the groups in ΦCM(4),
but the same is true for d ≤ 7 (see Table 1).

Proof. (1) If E has a short Weierstrass equation of the form y2 = f(x), where f(x) ∈
Z[x] is a monic cubic polynomial, the hypothesis C2 ⊂ G implies the irreducibility
of f(x) over Q, hence over K.

(2) By [34] we have 11, 17 /∈ SQ(4) = {2, 3, 5, 7, 13}.
(3) By [4, Prop. 3.9] we have C14, C2 × C14 /∈ ΦQ(4).
(4) Suppose that 〈P 〉 ⊕ 〈Q〉 ⊆ E(K)tors, where P and Q are points of order 3

and 7, respectively, and let F3 = Q(P ) and F7 = Q(Q) be the fields of definition
of each point. By Proposition 5, the field F7 ⊂ K is at most quadratic. Since C21
is not a subgroup of one of the groups in ΦQ(1) ∪ ΦQ(2), it follows that P is not
defined over F7, and if F7 = Q, then F3 cannot be quadratic. If F3 was quadratic,
then F7 would be quadratic also with F3 = F7, and so K would be a biquadratic
field. But Chou’s classification of ΦV4

Q (4) (see our introduction) shows that C21 is

not a subgroup of one of the groups in ΦV4

Q (4). It follows that F3 must be a quartic,

and so K = F3. Finally, notice that the same argument shows that if R ∈ E[3]
is any other non-trivial point of order 3, then [Q(R) : Q] ≥ 3. Hence, if d1 is the
quantity associated to the image of ρE,3 in the notation of [49], then 3 ≤ d1 ≤ 4.
We consider two cases depending on whether E has CM.

Let E/Q be without CM. Since 3 ≤ d1 ≤ 4, looking at Table 2 we conclude
that the image of the Galois representation ρE,3 must be isomorphic to 3Ns (G2

in Zywina notation [51, §1.2]), that is, a normalizer of split Cartan. Zywina [51,
Theorem 1.2] has determined the j-invariant of elliptic curves with 3Ns image:

J2(t) = 27
(t+ 1)3(t− 3)3

t3
, for some t ∈ Q.

On the other hand, E/Q has a Q-rational 7-isogeny since C7 ⊂ E(F7) and [F7 :
Q] ≤ 2, by Proposition 6. Then, we observe in [34, Table 3] that its j-invariant
must be of the form:

j7(h) =
(h2 + 13h+ 49)(h2 + 5h+ 1)3

h
, for some h ∈ Q.

The above j-invariants should be equal, so J2(t) = j7(h). In particular, since J2(t)
is a cube, we must have

hs3 = h2 + 13h+ 49, for some h, s ∈ Q.

This equation defines a curve C of genus 2, which in fact transforms (according to
Magma [2]) to C ′ : y2 = x6 − 26x3 − 27.4 The jacobian of C ′ has rank 0, so we can
use the Chabauty method, and determine that the points on C ′ are

C ′(Q) = {(−1, 0), (3, 0)} ∪ {(1 : ±1 : 0)}.
Therefore

C(Q) = {(7, 3), (−7,−1)} ∪ {(0 : 1 : 0), (1 : 0 : 0)}.

4A remarkable fact is that this genus 2 curve is new modular of level 63 (see [16]).
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Now, the corresponding j-invariants are j = 33 · 53 · 173 and j = −33 · 53, that
belong to CM elliptic curves. This finishes the proof in the non-CM case.

Now, suppose E/Q has CM. As seen above, E/Q must have a Q-rational 7-
isogeny, and the only curves with CM and a 7-isogeny have CM by Q(

√
−7) (see

for example Section 7.1, Table 1, of [17]). Moreover, since −7 is a quadratic non-
residue modulo 3, it follows that the image of ρE,3 is 3Nn by Theorem 7.6 of [34].
However, d1 = 8 by Table 2, which contradicts the fact that E/Q has a point
of order 3 defined over K = F3, a quartic field. Thus, there is no elliptic curve
E/Q with CM and a 21-torsion point defined over a quartic number field, which
concludes the proof of part (4).

(5) Suppose for a contradiction that C4 ⊆ G and C20 ⊆ H. E has no CM since
C20 is not a subgroup of one of the groups in ΦCM(4), by Table 1. Moreover, there
exists P ∈ E(K)[5] not defined over Q. That is, d1 ≤ 4 for the image of ρE,5.
Looking at Table 2 we check that in all the possible images with d1 ≤ 4 we have
d0 = 1. Therefore E has a Q-rational 5-isogeny. Then, since E has a point of
order 4 defined over Q, there exists a 20-isogeny defined over Q, which contradicts
Theorem 4.

(6) Suppose for a contradiction that C8 ⊆ G and C24 ⊆ H. As in case (5)
we conclude that E has no CM and d1 ≤ 4 for the image of ρE,3. In this case,
Table 2 shows that d0 ∈ {1, 2}. If d0 = 1, then there exists a 24-isogeny defined
over Q, in contradiction with Theorem 4. If d0 = 2, then the image of the Galois
representation ρE,3 is labelled 3Ns. Similar to the proof of (4) the j-invariant of
E/Q is a perfect cube. On the other hand, since E/Q has a point of order 8 defined
over Q, the curve E/Q has a rational 8-isogeny. Looking at Table 3 in [34] we have
that its j-invariant is of the form:

j8(h) =
(h4 − 16h2 + 16)3

(h2 − 16)h2
, for some h ∈ Q.

Then we must have j8(h) = s3 for some s ∈ Q, and this gives us the equation:

(h2 − 16)h2 = s3, for some h, s ∈ Q.

This equation defines a curve C of genus 2, which in fact transforms (according to
Magma [2]) to C ′ : y2 = x6 + 1. The jacobian of C ′ has rank 0, so we can use the
Chabauty method, and determine that the points on C ′ are

C ′(Q) = {(0,±1)} ∪ {(1 : ±1 : 0)}.
Therefore

C(Q) = {(±4, 0), (0, 0)} ∪ {(0 : 1 : 0)}.
These are cusps in X0(8), and so we have reached a contradiction to the existence
of such a curve E. This finishes the proof.

(7) Suppose that C2 × C2 ⊆ G and C2 × C10 ⊆ H. If E has no CM, then we can
conclude that E/Q has a Q-rational 5-isogeny as in the proof of case (5). However,
since C2 × C2 ⊆ G � E(Q)tors, then E is 2-isogenous to two curves E′ and E′′,
such that E, E′, and E′′ are all non-isomorphic pairwise. It follows that there is
a Q-rational 4-isogeny from E′ to E′′ that is necessarily cyclic. Moreover, since E
has a 5-isogeny, if follows that E′ also has a Q-rational 5-isogeny, and therefore E′

would have a Q-rational 20-isogeny which is impossible by Theorem 4.
If E has CM, with C2 ×C2 ⊆ E(Q)tors, then by counting independent Q-rational

2-isogenies, we see that j(E) = 1728 and E has a Weierstrass model of the form
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y2 = x3 − r2x, for some r ∈ Q (see [17], Section 7.1, Table 1). In particular,
E has CM by Q(i) and, since −1 is a square modulo 5, the image of ρE,5 must
be isomorphic to 5Ns (that is, the normalizer of split Cartan) by Theorem 7.6 of
[34]. However, Table 2 shows that d1 = 8 for such image, i.e., a point of order 5
is defined in an extension of degree ≥ 8, which contradicts the fact that there is a
point defined over K, an extension of degree 4. This finishes the proof.

(8) Suppose that C2 × C4 ⊆ G and C2 × C12 ⊆ H. We first note that E does not
have CM because C2 × C12 is not a subgroup of one of the groups in ΦCM(4), by
Table 1. As in case (6), we have d1 ≤ 4 for the image of ρE,3 and Table 2 shows that
d0 ∈ {1, 2}. Moreover, the case d0 = 1 is not possible because E is 2-isogenous to a
curve E′ that would have a Q-rational 24-isogeny, which do not exist by Theorem
4. If d0 = 2, then the image of ρE,3 is 3Ns and, as pointed out in case (4), this

implies that E has j-invariant J2(t) for some t ∈ Q. Therefore E is Q-isomorphic
to the elliptic curve

E′
t : y2 + xy = x3 − 36

J2(t)− 1728
x− 1

J2(t)− 1728
.

In particular, E and E′
t are quadratic twists of each other, and their discriminants

satisfy Δ(E) = u6Δ(E′
t), for some non-zero u ∈ Q. On the other hand, since the

full 2-torsion is defined over Q we have that Δ(E) is a square (and hence so is
Δ(E′

t)). That is:

3t(t2 − 6t− 3) = r2, for some r ∈ Q.

This equation defines an elliptic curve (36a4) with only two rational points, namely
(r, t) = (0, 0) and (1 : 0 : 0). These points do not correspond to elliptic curves.
This finishes the proof.

(9) Suppose that H = C6 × C6. By Table 1, the curve E/Q cannot have CM, so
let us assume that E is not CM. Since C3 ×C3 ⊆ H, we have that d|4 for the image
of ρE,3. Looking at the Table 2 we check that d = 2 (3Cs.1.1) or d = 4 (3Cs), so
we treat each case separately.

For the case 3Cs.1.1 we have d1 = 1, that is C3 ⊆ G. Now, since |H| is even, it
follows that |G| must be even by (1), and so C6 ⊆ G. On the other hand, since d = 2
for 3Cs.1.1, there exists a quadratic field F ⊂ K such that C3 × C3 ⊆ E(F )tors.
Then [21, Theorem 2] shows that G = C6.

Now suppose that the image of ρE,3 is 3Cs. We have d1 = 2, therefore C3 ⊆ G.
As before, |G| is even (since |H| is even) and G ⊆ H, then G = C2 or G = C2 × C2.
We are going to discard the latter case. Zywina [51, Theorem 1.2] has determined
the j-invariant of curves with mod 3 image conjugate to 3Cs (G1 in Zywina notation
[51, §1.2]):

J1(t) = 27
(t+ 1)3(t+ 3)3(t2 + 3)3

t3(t2 + 3t+ 3)3
, for some t ∈ Q.

As in the case of (8), the fact that the full 2-torsion is defined over Q implies that
the discriminant of E must be a square. This implies:

3t(t2 + 3t+ 3) = r2, for some r ∈ Q.

This equation defines an elliptic curve (36a3) which has only the rational points
(0, 0) and (1 : 0 : 0), which do not correspond to elliptic curves. This finishes the
proof.
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(10) Let P ∈ E(K)[9] be a point of order 9 on E/Q, with [K : Q] = 4. We shall
assume that Q(P ) = K because, otherwise, Q(P ) is trivial or quadratic over Q. In
particular, this implies that K ⊆ Q(E[9]). Consider m = [K : K ∩ Q(E[3])]. On
one hand, we have that

m = [K : K ∩Q(E[3])] = [KQ(E[3]) : Q(E[3])],

and, therefore, m divides [Q(E[9]) : Q(E[3])], which is a power of 3 (because
Gal(Q(E[9])/Q(E[3])) ⊆ GL(2,Z/9Z)/GL(2,Z/3Z) ∼= (Z/3Z)4). On the other
hand, m is a divisor of [K : Q] = 4. It follows that m = 1 and K ⊆ Q(E[3]).

Since Q(E[3])/Q is Galois, it follows that the Galois closure K̂ of K in Q is

also contained in Q(E[3]). Since K ⊆ K̂, we know that E(K̂) contains P . We

distinguish three cases according to whether E(K̂)[9] is isomorphic to Z/9Z, Z/9Z×
Z/3Z, or Z/9Z× Z/9Z, and we shall prove that all cases lead to a contradiction.

• E(K̂)[9] ∼= Z/9Z. Then, 〈P 〉 is a Galois-stable subgroup of order 9. In
particular, the field of definition of P , that is, K = Q(P ), is Galois and it
is isomorphic to a subgroup of (Z/9Z)× ∼= Z/6Z. Since [K : Q] = 4, this is
impossible.

• E(K̂)[9] ∼= Z/9Z× Z/3Z. Since K̂/Q is Galois, this implies that 〈3P 〉 is a
Galois-stable subgroup of order 3. In particular, the Galois representation
associated to E[3] has an image isomorphic to an upper triangular subgroup
G of

B =

{(
a b
0 c

)}
⊆ GL(2,Z/3Z).

Since K ⊆ K̂ ⊆ Q(E[3]), [K : Q] = 4, and |B| = 4 · 3, it follows that
the subgroup H of G that fixes K must be trivial or of order 3. Since

such a group H is normal in G, as a consequence we obtain K = K̂ and
Gal(K/Q) ∼= Z/2Z×Z/2Z. However, by Theorem 1.4 of [4], it is impossible
for a biquadratic extensionK to have a torsion subgroup E(K)[9] ∼= Z/9Z×
Z/3Z.

• E(K̂)[9] ∼= Z/9Z × Z/9Z. Since K̂ ⊆ Q(E[3]), then this means that
Q(E[9]) = Q(E[3]). In particular, Q(ζ9) ⊆ Q(E[3]). Let G ⊆ GL(2,Z/3Z)
be the image of ρE,3. If G = GL(2,Z/3Z) and E has no CM, then G is one
of the groups labelled 3Cs.1.1, 3Cs, 3B.1.1, 3B.1.2, 3Ns, 3B, or 3Nn (see
Table 2). If E has CM, then by Proposition 1.14 of [51], G is one of 3Ns,
3Nn, G, H1, or H2. However, none of these groups have a subgroup H such
that G/H ∼= Gal(Q(ζ9)/Q) ∼= Z/6Z. It follows that G = GL(2,Z/3Z).

Thus, E/Q is a curve such that ρE,3 is surjective, but ρE,9, the represen-
tation associated to E[9] is not surjective. Moreover, the image of ρE,3 and
ρE,9 are isomorphic (because Q(E[3]) = Q(E[9]) in our case). However, the
elliptic curves over Q such that ρE,3 is surjective but ρE,9 is not surjective
where classified by Elkies [9] and for such curves Gal(Q(E[3])/Q) has size
48, while Gal(Q(E[9])/Q) has size 144. Therefore, this third possibility is
also impossible in our setting.

(11) By (10) we know that if P ∈ E(K)[9], then there exists a subfield F � K
such that P ∈ E(F )[9].

• Suppose that C3 × C9 � 〈P 〉 ⊕ 〈Q〉 ⊆ E(K)tors, where P and Q are points
of order 3 and 9 respectively, and Q is defined over the quadratic field
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F ⊂ K. The point P + Q also has order 9, and it is therefore defined
over a quadratic field F ′ ⊂ K. If F ′ = F , then C3 × C9 ⊆ E(F )tors. But
C3 × C9 is not a subgroup of one of the groups in ΦQ(2). If F ′ = F , then
C3 × C9 ⊆ E(FF ′)tors. But K = FF ′ is a biquadratic field and C3 × C9 is

not a subgroup of one of the groups in ΦV4

Q (4).

• Suppose that C18 ⊆ H. By (1) we have G = C2, or C6. Then C18 ⊆ E(F )tors,
but C18 is not a subgroup of one of the groups in ΦQ(2).

(12) Suppose that G = C3 and C9 ⊆ H. By (10) there exists a quadratic field
F ⊂ K such that C9 ⊆ E(F )tors. But this is impossible by [21, Theorem 2]. �

Theorem 8. Let E/Q be an elliptic curve. If E(K)tors � C15 over some quartic
field K, then j(E) ∈ {−52/2, −52 · 2413/23, −5 · 293/25, 5 · 2113/215}. Moreover,
the field of definition of the torsion point of order 15 is abelian over Q.

Proof. Let E/Q and K be as in the statement of the theorem, such that E(K)tors =
〈R〉, where R ∈ E is a point of exact order 15. We will first show that Q(R) is
abelian.

Let P3 = 5R and P5 = 3R. By Table 1, we know that C15 /∈ ΦCM(4), so E/Q
does not have CM. Let G5 be the image of ρE,5. Since R is defined over K, the
point P5 of order 5 is defined in degree 1, 2, or 4, and so d1(G5) ≤ 4. By Table 2,
the image G5 is a subgroup of the Borel{(

∗ ∗
0 ∗

)}
⊂ GL(2,Z/5Z).

Since P5 is defined over a quartic field K, it follows that P5 is contained in the fixed
field of the subgroup

G5 ∩
{(

1 ∗
0 1

)}
⊂ GL(2,Z/5Z).

In particular, Q(P5) is contained in a Galois extension with Galois group⊆ (Z/5Z)×

⊕(Z/5Z)×. It follows that Q(P5) is Galois and abelian.
Similarly, consider G3, the image of ρE,3. By Table 2, either G3 is a subgroup of

the Borel of GL(2,Z/3Z), or G3 is 3Ns. If G3 is contained in a Borel, then as in the
case of p = 5, we conclude that Q(P3) is abelian, and therefore Q(P3, P5) = Q(R) is
abelian. Otherwise, suppose that the image of ρE,3 is 3Ns. By [51], the j-invariant
of E is of the form j(E) = J2(t) for some t ∈ Q, with

J2(t) = 27
(t+ 1)3(t− 3)3

t3
.

On the other hand, we know thatG5 is contained in a Borel subgroup of GL(2,Z/5Z)
and therefore E/Q has a Q-rational 5-isogeny. Using the tables of [34], we see that
j(E) = j(h) for some h ∈ Q, where

j5(h) =
(h2 + 10h+ 5)3

h
.

Thus, j5(h) = J2(t). Since J2(t) is a perfect cube we must have h = s3 and the
pair (s, t) is a point on

C : (s6 + 10s3 + 5)t = 3(t+ 1)(t− 3)s.
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The curve C has genus 1, and there is a degree 1 rational map φ : C → E′, where
E′ is the elliptic curve 15a3. Now, the curve E′ has finite Mordell-Weil group,
isomorphic to C2 × C4. The rational points

S = {(−5/2, 9/32), (−5/2,−32/3), (−2,−2/3), (0, 0), (−2, 9/2)} ∪ {(1 : 0 : 0)}
on C map to 6 rational points on E′, while (0 : 1 : 0) ∈ C is singular (a node) and

once the singularity is resolved, the two points on the desingularization Ĉ of C map
to the two remaining rational points on E′. It follows that C(Q) = S∪{(0 : 1 : 0)}.
The non-cuspidal points on C(Q) correspond to the following j-invariants:

{113/23, −293 · 413/215}.
Examples of curves with j-invariants 113/23 and −293 · 413/215, respectively, are
338d1 and 338d2. For both curves, Q(P5) is a cyclic quartic, and by Lemma 9.6,
part (3), of [34], every curve with such j-invariants has the same property. It follows
that Q(P5) = Q(R) = K is Galois, and abelian.

Therefore, we have shown that in all cases Q(R) is Galois, abelian, and of degree
dividing 4. If so, then E/Q must have a Q-rational 15-isogeny. By [34], Table 4,
there are only 4 possible j-invariants, namely,

{−52/2, −52 · 2413/23, −5 · 293/25, 5 · 2113/215}.
Elliptic curves with these j-invariants that reach C15 in a quartic extension are 50a1,
450b2, 50a3, and 50a4, respectively. This completes the proof of the theorem. �

We will use the following result, known as the 2-divisibility method.

Theorem 9 ([25], Theorem 3.1; [21], Prop. 12). Let E be an elliptic curve over
a number field k with a k-rational N-torsion point P . Then E has a K-rational
2N-torsion point Q, where K is a quartic extension field of k. Moreover, the same
result holds if we replace k by k(t), and K/k(t) a quartic extension.

Now we apply the 2-divisibility method to the cases of C20 and C24.

Theorem 10. There are infinitely many non-isomorphic (over Q) elliptic curves
E/Q such that there is a quartic field K with E(K)tors � C20 (resp. C24).

Proof. Kubert [32, Table 3] gave for each G ∈ Φ(1) a one-parameter family

T G
t : y2 + (1− c)xy − by = x3 − bx2, where b, c ∈ Q(t),

such that T G
t (Q(t))tors � G and, in fact, for all but finitely many values of t0 ∈ Q,

the curve T G
t0 /Q has a subgroup G in its torsion subgroup over Q. When G = C10

(resp. C12), Mazur’s classification of the torsion subgroups that can occur over Q

implies that T G
t0 (Q)tors � G for all but finitely many t0 ∈ Q. The equation T G

t is
called the Kubert-Tate normal form. For the cases we are interested in, we have

G = C10 : c = (2t3 − 3t2 + t)/(t− (t− 1)2) , b = ct2/(t− (t− 1)2),
G = C12 : c = (3t2 − 3t+ 1)(t− 2t2)/(t− 1)3 , b = c(2t− 2t2 − 1)/(t− 1),

and the point P = (0, 0) has order 10 and 12, respectively. Now, we can use
the 2-divisibility method (Theorem 9) to halve P . This method allows to build
an extension L/Q(t) of degree 4 and a point Q ∈ T G

t (L) such that 2Q = P .
As mentioned above, for all but finitely many t0 ∈ Q the curve T G

t0 /Q satisfies

T G
t0 (Q)tors � C10 (or C12, respectively). Then, by the 2-divisibility method we find

a number field Lt0/Q of degree dividing 4 such that T G
t0 (Lt0)tors � C20 (resp. C24).
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Since C20, C24 /∈ ΦQ(d) for d ≤ 3, we have that [Lt0 : Q] = 4 for any t0 ∈ Q. Since
the j-invariant of Tb,c is not constant, this proves that there are infinitely many

non-Q-isomorphic elliptic curve over Q with torsion structures C20 and C24 over
quartic fields. �

Remark. One can construct explicit infinite families of elliptic curves with the prop-
erties of Theorem 10 using the recipe described by Proposition 12 in [21].

2. Proof of Theorems 1 and 2

We are ready to prove our main theorems. In Theorem 1, we shall first determine
the isomorphism classes that appear in Φ�

Q(4) = ΦQ(4) ∩ Φ∞(4) and then use that
information to determine Φ∞

Q (4).

Proof of Theorem 1. Let E/Q be an elliptic curve, K a quartic number field, G ∈
ΦQ(1) and H ∈ Φ�

Q(4) such that G � E(Q)tors ⊆ E(K)tors � H. By definition,
Φ�

Q(4) ⊆ Φ∞(4), so our task is to find out what structures in Φ∞(4) also appear in
ΦQ(4). We claim that Φ�

Q(4) = S, where

S = {Cn | n = 1, . . . , 10, 12, 13, 15, 16, 20, 24} ∪ {C2 × C2m | m = 1, . . . , 6, 8}
∪ {C3 × C3m | m = 1, 2} ∪ {C4 × C4m | m = 1, 2} ∪ {C5 × C5} ∪ {C6 × C6} .

We have examples of torsion structures over quartic fields for all the groups in the
list S: on one hand, all those groups that appear in ΦQ(2) also appear in ΦQ(4) by
extending the corresponding quadratic field to an appropriate biquadratic where
the torsion subgroup does not grow (see Lemma 2.2 of [4]) and, on the other hand,
we have examples in Table 4 of the remaining groups that occur over quartics.
Therefore it remains to prove that if H ∈ Φ�

Q(4), then

H /∈ {Cn | n = 11, 14, 17, 18, 21, 22} ∪ {C2 × C2m | m = 7, 9} ∪ {C3 × C9} .

Indeed,

• H = C11, C17, or C22 by Theorem 7, part (2), since either 11 or 17 would
divide |H|.

• H = C14, or C2 × C14 by Theorem 7, part (3).
• H = C21 by Theorem 7, part (4).
• H = C18, C2 × C18, or C3 × C9 by Theorem 7, part (11).

This concludes the determination of Φ�
Q(4). It remains to determine Φ∞

Q (4), i.e.,
those structures that occur for infinitely many elliptic curves over Q, that are non-
isomorphic (over Q). Comparing the list Φ�

Q(4) and Theorem 1.2 of [4], all but
three structures (C15, C20, and C24) of appear over Galois quartics, and Chou has
shown that each one of those appears infinitely often over Q. Hence, it remains to
see what happens in the three remaining structures. Our Theorem 10 shows that
C20 and C24 occur infinitely often, and Theorem 8 shows that C15 occurs only for 4
distinct j-invariants, as claimed. Hence, Φ∞

Q (4) = Φ�
Q(4) \ {C15} and this concludes

the proof of the theorem. �

Proof of Theorem 2. The groups H ∈ Φ�
Q(4) that do not appear in some Φ�

Q(4, G)
for any G ∈ Φ(1), with G ⊆ H, can be ruled out using Theorem 7. In Table 3
below, for each group G at the top of a column, we indicate what groups H (in
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each row) may appear, and indicate:

• with (1)–(12), which part of Theorem 7 is used to prove that the pair (G,H)
cannot appear,

• with −, if the case is ruled out because G ⊂ H,
• with a �, if the case is possible and, in fact, it occurs. There are three
types of check marks in Table 3:

– � (without a subindex) means that G = H. Note that for any d ≥ 1,
and any elliptic curve E/Q with E(Q)tors � G, there is always an
extension K/Q of degree d such that E(K)tors � E(Q)tors (and, in
fact, this is the case for almost all degree d extensions).

– �2 means that the structure H occurs already over a quadratic field,
and examples are already listed in Table 2 of [20]. Since H occurs
over a quadratic field F , it also occurs over quartics by extending F
to an appropriate biquadratic K where the torsion does not grow any
further.

– �4 means that H can be achieved over a quartic field K but not over an
intermediate quadratic field, and we have collected examples of curves
and quartic fields in Table 4. �

Table 3. The table displays either if the case happens for G = H
(�), if it already occurs over a quadratic field (�2), if it occurs
over a quartic but not a quadratic (�4), if it is impossible because
G ⊂ H (−) or if it is ruled out by Theorem 7 ((1)–(12)).

�
��H
G C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C12 C2 × C2 C2 × C4 C2 × C6 C2 × C8

C1 � − − − − − − − − − − − − − −
C2 (1) � − − − − − − − − − − − − −
C3 �2 − � − − − − − − − − − − − −
C4 (1) �2 − � − − − − − − − − − − −
C5 �2 − − − � − − − − − − − − − −
C6 (1) �2 (1) − − � − − − − − − − − −
C7 �2 − − − − − � − − − − − − − −
C8 (1) �2 − �2 − − − � − − − − − − −
C9 �2 − (12) − − − − − � − − − − − −
C10 (1) �2 − − (1) − − − − � − − − − −
C11 (2) − − − − − − − − − − − − − −
C12 (1) �2 (1) �2 − �2 − − − − � − − − −
C13 �4 − − − − − − − − − − − − − −
C14 (1) (3) − − − − (1) − − − − − − − −
C15 �4 − �2 − �2 − − − − − − − − − −
C16 (1) �2 − �4 − − − �2 − − − − − − −
C17 (2) − − − − − − − − − − − − − −
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�
��H
G C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C12 C2 × C2 C2 × C4 C2 × C6 C2 × C8

C18 (1) (11) (1) − − (11) − − (1) − − − − − −
C20 (1) �4 − (5) (1) − − − − �4 − − − − −
C21 (4) − (4) − − − (4) − − − − − − − −
C22 (1) (2) − − − − − − − − − − − − −
C24 (1) �4 (1) �4 − �4 − (6) − − � − − − −

C2 × C2 (1) �2 − − − − − − − − − � − − −
C2 × C4 (1) �4 − �2 − − − − − − − �2 � − −
C2 × C6 (1) �2 (1) − − �2 − − − − − �2 − � −
C2 × C8 (1) �4 − �2 − − − �2 − − − �2 �2 − �
C2 × C10 (1) �2 − − (1) − − − − �2 − (7) − − −
C2 × C12 (1) �4 (1) �2 − �4 − − − − �2 �2 (8) � −
C2 × C14 (1) (3) − − − − (3) − − − − (3) − − −
C2 × C16 (1) �4 − �4 − − − �2 − − − �2 �2 − �2
C2 × C18 (1) (11) (1) − − (11) − − (1) − − (11) − (11) −
C3 × C3 �4 − �2 − − − − − − − − − − − −
C3 × C6 (1) �4 (1) − − �2 − − − − − − − − −
C3 × C9 (11) − (11) − − − − − (11) − − − − − −
C4 × C4 (1) �4 − �2 − − − − − − − �4 �2 − −
C4 × C8 (1) �4 − �4 − − − �4 − − − �4 �4 − �4
C5 × C5 �4 − − − �4 − − − − − − − − − −
C6 × C6 (1) �4 (1) − − �4 − − − − − (9) − (9) −

3. Examples

In this section we describe an algorithm to compute the quartic fields K where
the torsion grows for a given elliptic curve E/Q. First, we compute G = E(Q)tors.
By Theorem 2 we know how the set Φ�

Q(4, G) of all possible isomorphism types
of E(K)tors. Then, we compute the possible orders of points belonging to groups
H ∈ Φ�

Q(4, G). Now for each possible order of a torsion point, say n, compute
the division polynomial ψn(x) (note that here ψn(x) is divisible by ψm(x) for each
divisor m of n). Afterwards, we factor each ψn(x), and keep only the factors of
degree 1, 2, or 4. It follows that the quadratic and quartic fields where the torsion
could grow are contained in the compositum of the fields generated by these factors
together with the fields generated by the y-coordinates corresponding to the roots
of these factors. Let us explain this method with two examples.

Example 3.1. Let E be the elliptic curve 50a2, given by the minimal Weierstrass
equation:

E : y2 + xy + y = x3 − 126x− 552.
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We compute E(Q)tors � C1. Then, by Theorem 2 we only need to compute the
division polynomials ψn(x) for n = 5, 7, 9, 13. We check that for n = 7, 13, ψn(x) is
irreducible over Q (and degree > 4). For n = 5, 9 we have the following irreducible
factors of degree 1, 2, or 4:

n = 5 f5(x) = x2 + 11x+ 29,

n = 9 f9(x) = 9x+ 57.

Now for n ∈ {5, 9}, let αn be a root of fn(x), and let βn be such that β2
n + αnβn +

βn = α3
n − 126αn − 552 and Kn = Q(αn, βn), so that E acquires a point of order

n over Kn. It remains to compute the degree of K5, K9 and K5K9, and take only
those fields of degree ≤ 4. In our case we obtain:

E(Q(
√
−3)) � C3 and E(Q(ζ5)) � C5.

Hence, the torsion subgroup of E(Q) grows over Q(ζ5) and quartic fields containing
Q(

√
−3).

Example 3.2. Let E be the elliptic curve 90c4, given by the minimal Weierstrass
equation:

E : y2 + xy + y = x3 − x2 − 2597x− 50281.

In this case we have E(Q)tors � C2. Theorem 2 shows that it suffices to factor the
division polynomials ψn(x) for n = 3, 5, 16. The irreducible factors of degree 1, 2,
or 4 corresponding to those division polynomials are:

n = 3 f3(x) = x+ 30,

n = 16 f16,1(x) = x+ 33,

f16,2(x) = 2x+ 51,

f16,3(x) = 4x+ 117,

f16,4(x) = x2 − 30x− 1729,

f16,5(x) = x4 − 60x3 − 10314x2 − 351756x− 3697893,

f16,6(x) = 2x4 + 204x3 + 10233x2 + 274806x+ 2924667,

f16,7(x) = x4 + 132x3 + 5094x2 + 59508x− 46089.

Doing all the possible compositums of number fields we obtain:

E(Q(
√
−1)) � C4, E(Q(

√
3,
√
−1)) � C12,

E(Q(
√
−6)) � C4, E(Q(

√
3,
√
−2)) � C12,

E(Q(
√
−3)) � C6, E(Q(

√
6,
√
−1)) � C2 × C4 � E(Q( 4

√
6)),

E(Q(
√
6)) � C2 × C2, E(Q(

√
−3,

√
−2)) � C2 × C6.

Further examples can be found in Table 4. Each row shows the label of an
elliptic curve E/Q such that E(Q)tors � G, in the first column, and E(K)tors � H,
in the second column, where K = Q(α) and α is a root of the irreducible quartic
in the third column. Note that these examples correspond to pairs (G,H) such
that G ∈ Φ(1) and H ∈ Φ�

Q(4, G) but H /∈ ΦQ(2, G). Examples of curves with
H ∈ ΦQ(2, G) can be found in Table 2 of [20].

Licensed to AUTODOCMAD. Prepared on Wed Aug  1 06:18:42 EDT 2018 for download from IP 150.244.21.16.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



TORSION OF RATIONAL ELLIPTIC CURVES OVER QUARTIC FIELDS 1473

Table 4. Examples of elliptic curves such that G ∈ Φ(1) and
H ∈ Φ�

Q(4, G) but H /∈ ΦQ(2, G).

G H Quartic K Label of E/Q

C1

C13 x4 − x3 − 6x2 + x+ 1 2890d1

C15 x4 − 2x3 + 5x2 − 4x+ 19 50a4

C3 × C3 x4 − 2x3 + 5x2 − 4x+ 19 175b2

C5 × C5 x4 + x3 + x2 + x+ 1 275b2

C2

C20 x4 − 5x2 + 10 450a4

C24 x4 − 18x2 − 15 960o3

C2 × C4 x4 − 5 15a5

C2 × C8 x4 + 1 24a6

C2 × C12 x4 − 2x3 + 5x2 − 4x+ 19 30a3

C2 × C16 x4 − 4x3 + 17x2 − 26x+ 16 3150bk1

C3 × C6 x4 − 2x3 + 11x2 − 10x+ 4 98a4

C4 × C4 x4 + 1 64a4

C4 × C8 x4 + 9 2880r6

C6 × C6 x4 − 2x3 + 11x2 − 10x+ 4 98a3

C4

C16 x4 − x3 − 4x2 + 4x+ 1 15a7

C24 x4 − 8x2 + 10 960o8

C2 × C16 x4 − 4x3 + 17x2 − 26x+ 16 1470k1

C4 × C8 x4 + 9 240d6

C5 C5 × C5 x4 − x3 + x2 − x+ 1 11a1

C6
C24 x4 − 8x2 + 10 90c8

C2 × C12 x4 − 2x3 + 5x2 − 4x+ 19 30a1

C6 × C6 x4 − 2x3 + 11x2 − 10x+ 4 14a1

C8
C2 × C16 x4 − 4x3 + 17x2 − 26x+ 16 210e1

C4 × C8 x4 + 9 15a4

C10 C20 x4 − 2x3 + x2 + 2 66c1

C12 C24 x4 − 18x2 − 15 90c3

C2 × C2
C2 × C16 x4 − x3 − 4x2 + 4x+ 1 75b2

C4 × C4 x4 − 2x3 + x2 + 5 15a2

C4 × C8 x4 − 2x3 + x2 + 5 75b3

C2 × C4
C2 × C16 x4 − x3 − 4x2 + 4x+ 1 15a3

C4 × C8 x4 − 2x3 + x2 + 5 15a1

C2 × C8
C2 × C16 x4 − 2x3 − 11x2 + 12x+ 186 210e2

C4 × C8 x4 − 2x3 + 7x2 − 6x+ 2 210e2
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4. Computations

Let G ∈ Φ(1) and let d be a positive integer. We define the set

HQ(d,G) = {S1, . . . , Sn},

where Si = [H1, . . . , Hm] is a list of groups Hj ∈ ΦQ(d,G) \ {G}, such that, for
each i = 1, . . . , n, there exists an elliptic curve Ei defined over Q that satisfies the
following properties:

• Ei(Q)tors � G.
• There are number fields K1, . . . ,Km (non-isomorphic pairwise) of degree
dividing d with Ei(Kj)tors � Hj , for all j = 1, . . . ,m; and for each j there
does not exist K ′

j ⊂ Kj such that Ei(K
′
j)tors � Hj .

We are allowing the possibility of two (or more) of the Hj being isomorphic.
Note that a similar definition was first introduced in [21] for d = 2 and generalized

in [19]. The second condition is a little bit different here, because of a new behavior
that appears only for d = 4 but not for d = 2, 3 (since they are primes), namely
the existence of intermediate fields. For example, let E be the elliptic curve 50a2.
Then E(Q)tors � C1 and E(Q(

√
−3))tors � C3 (see Example 3.1). In particular,

E(Q(
√
−3,

√
d))tors � C3 for any squarefree integer d = −3. For this reason we

have made the above change in the definition of HQ(d,G).
The sets HQ(d,G) have been determined for d = 2, 3 and for any G ∈ Φ(1)

in [19, 21]. In order to guess what HQ(4, G) may look like, we carried out an
exhaustive computation in Magma [2] for all elliptic curves over Q with conductor
less than 350.000 from [6] (a total of 2.188.263 elliptic curves) but restricting to
the non-sporadic case. That is, we have tried to compute the sets H�

Q(4, G), which
are similarly defined to the sets HQ(4, G) but restricting our attention to Hj ∈
Φ�

Q(4, G).
Moreover, the maximum number of quadratic [21,42] and cubic [19] fields where

the torsion could grow has been determined. In the case of number fields of non-
prime degree the situation changes. As the example above of the elliptic curve
50a2 shows, there could be infinitely many non-isomorphic number fields where the
torsion grows. Let us define

hQ(d) = max
G∈Φ(1)

{
#S

∣∣∣ S ∈ HQ(d,G)
}
.

Note that if d is prime, then hQ(d) coincides with the maximum number of number
fields of degree d where the torsion grows for a fixed elliptic curve E/Q. The cases
hQ(2) = 4 and hQ(3) = 3 have been determined in [21, 42] and [19], respectively.
Our computations (see Table 5) and in particular Example 3.2 show that

hQ(4) ≥ 9.

Table 5 gives all the torsion configurations over quartic fields (sets in H�
Q(4, G)

for any G ∈ Φ(1)) that we have found. We have found 133 possible configurations.
However, we have not tried to determine that those are all the possible cases. But
note that the largest conductor where we needed to complete the table was 18.176,
far from 350.000.
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In Table 5, the third column provides an elliptic curve E/Q with minimal con-
ductor such that:

• the first column is G � E(Q)tors ∈ Φ(1);
• the second is a torsion configuration [H1, . . . , Hm], where Hj ∈ Φ�

Q(4, G) \
{G}, such that there are number fields K1, . . . ,Km (non-isomorphic pair-
wise) of degree dividing 2 or 4 with E(Kj)tors � Hj , for all j = 1, . . . ,m;
and for each j there does not exist K ′

j ⊂ Kj such that Ei(K
′
j)tors � Hj .

In Table 5, we have abbreviated Cn by (n), and Cn × Cm by (n,m). Moreover, if
H = Cn×Cm appears for s distinct fields, then we have written (n,m)s in the table.
The corresponding fields Kj for each torsion configuration can be found in the home
page of the first author (at http://www.uam.es/enrique.gonzalez.jimenez), together
with a list of configurations for all curves of conductor up to 350.000.

Table 5. Torsion configurations over quartic fields.

G H�
Q(4, G) Label

(1)

(3) 19a2

(5) 11a2

(7) 208d1

(9) 54a2

(13) 2890d1

(3)2 121b1

(3), (5) 50a2

(3), (15) 50b3

(5)2 18176b2

(5), (5, 5) 275b2

(3)2, (5) 338d1

(3), (5), (15) 50a4

(3)2, (3, 3) 175b2

(2)

(4), (2, 2) 46a1

(4), (2, 6) 36a3

(4), (2, 10) 450a3

(2, 2), (2, 4) 200b1

(4), (10), (2, 2) 66c3

(4), (2, 2), (2, 4) 49a1

(4), (2, 2), (2, 10) 1014c2

(4), (2, 6), (2, 12) 1040g2

(8), (2, 2), (2, 4) 294f1

(4)2, (2, 2), (2, 4) 120b1

(4)2, (2, 2), (4, 4) 320a4

(4)2, (2, 6), (2, 12) 450g1

(4), (6)2, (2, 2) 726a2

(4), (6), (2, 2), (2, 6) 14a3

(4), (6), (2, 6), (6, 6) 98a3

(4), (8), (2, 2), (2, 8) 45a1

(4), (10), (2, 2), (2, 10) 150b3

(4), (12), (2, 2), (2, 12) 30a3

(4), (16), (2, 2), (2, 16) 3150bk1

G H�
Q(4, G) Label

(2)

(6)2, (2, 2), (2, 4) 256a1

(6), (12), (2, 2), (2, 6) 36a4

(8)2, (2, 2), (4, 8) 2880r6

(10), (20), (2, 2), (2, 10) 450a4

(4)2, (8), (2, 2), (2, 4) 33a2

(4), (4), (8), (2, 2), (4, 4) 64a4

(4)2, (2, 2), (2, 4)2 33a4

(4)2, (2, 6), (2, 12)2 960o7

(4), (6), (2, 2), (2, 4), (2, 6) 130a4

(4), (8), (12), (2, 2), (2, 12) 960e3

(4), (8), (16), (2, 2), (2, 8) 63a1

(4), (8), (2, 2), (2, 4), (2, 8) 24a6

(4), (12), (24), (2, 2), (2, 12) 960o3

(4), (12), (2, 2), (2, 4), (2, 12) 720j3

(4)2, (8)2, (2, 2), (2, 4) 45a3

(4)2, (8), (2, 2), (2, 4)2 17a3

(4), (8), (16)2, (2, 2), (2, 8) 75b1

(4), (8), (16), (2, 2), (2, 4), (2, 8) 510e7

(4)2, (8)2, (2, 2), (2, 4)2 63a6

(4), (6)2, (2, 2), (2, 6)2, (3, 6) 112c3

(4), (8), (16)2, (2, 2), (2, 4), (2, 8) 1470k3

(6)2, (12), (2, 2), (2, 6)2, (3, 6) 98a4

(4)2, (6), (12)2, (2, 2), (2, 4), (2, 6) 30a7

(4)2, (8)4, (2, 2), (2, 4) 630c6

(4)2, (8)4, (2, 2), (4, 4) 4410r6

(4)2, (8)3, (2, 2), (2, 4)2 15a5

(4)2, (6), (8), (12)2, (2, 2), (2, 4), (2, 6) 90c5

(4)2, (6), (12)2, (2, 2), (2, 4)2, (2, 6) 90c4

(3)
(15) 50a1

(3, 3) 19a1
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G H�
Q
(4, G) Label

(4)

(8), (2, 4) 33a3

(8), (2, 8) 192c6

(8), (2, 12) 150c3

(8), (4, 4) 40a4

(2, 4), (2, 8) 64a3

(8), (2, 4), (2, 8) 17a4

(8), (2, 4), (4, 4) 17a1

(8), (2, 8), (2, 16) 1470k1

(8)2, (2, 4), (2, 8) 24a3

(8)2, (2, 8), (4, 8) 240d6

(8), (12), (2, 4), (2, 12) 90c1

(12), (24), (2, 4), (2, 12) 960o8

(8), (8), (16), (2, 4), (2, 8) 21a4

(8)2, (16)2, (2, 4), (2, 8) 15a7

(8)2, (2, 4), (2, 8)2, (4, 4) 195a6

(8)2, (16)3, (2, 4), (2, 8) 1230f4

(8)2, (16)2, (2, 4), (2, 8)2, (4, 4) 210e6

(5)
(15) 50b1

(5, 5) 11a1

(6)

(12), (2, 6) 14a4

(12), (2, 6), (2, 12) 130a2

(12)2, (2, 6), (2, 12) 30a1

(12), (2, 6), (3, 6), (6, 6) 14a1

(12)2, (24), (2, 6), (2, 12) 90c8

(12)2, (2, 6), (2, 12)2 90c7

(8)

(16), (2, 8) 21a3

(16), (2, 8), (2, 16) 1230f1

(16), (2, 8), (4, 8) 15a4

(16)2, (2, 8), (2, 16) 210e1

(10) (20), (2, 10) 66c1

(12) (24), (2, 12) 90c3

G H�
Q(4, G) Label

(2, 2)

(2, 4) 33a1

(2, 4), (2, 8) 45a5

(2, 4), (4, 4) 64a1

(2, 4)3 120b2

(2, 4)2, (2, 8) 63a2

(2, 4)2, (2, 12) 960o6

(2, 4)2, (4, 4) 17a2

(2, 4)2, (4, 8) 1200j4

(2, 4), (2, 6), (2, 12) 90c2

(2, 4), (2, 8)2 45a2

(2, 4), (2, 8), (4, 8) 75b3

(2, 4)3, (2, 6) 210a6

(2, 4)3, (4, 4) 231a3

(2, 4)2, (2, 6), (2, 12) 30a6

(2, 4)2, (2, 8), (2, 16) 75b2

(2, 4)2, (2, 8), (4, 4) 40a1

(2, 4)2, (2, 8), (4, 8) 510e5

(2, 4), (2, 6), (2, 12)2 720j6

(2, 4)3, (2, 8), (4, 4) 21a2

(2, 4)2, (2, 8)2, (4, 4) 75b5

(2, 4), (2, 6), (2, 12)3 150c6

(2, 4)3, (2, 8)2, (4, 4) 42a3

(2, 4)2, (2, 8)3, (4, 4) 294c2

(2, 4)3, (2, 8)3, (4, 4) 15a2

(2, 4)2, (2, 8)4, (4, 4) 6720cd4

(2, 4)3, (2, 8)4, (4, 4) 210e5

(2, 4)

(2, 8), (4, 4) 21a1

(2, 8)2, (4, 4) 24a1

(2, 8)2, (4, 8) 1230f2

(2, 8), (2, 16), (4, 4) 15a3

(2, 8), (4, 4), (4, 8) 15a1

(2, 8)2, (4, 4), (4, 8) 210e3

(2, 6)
(2, 12) 90c6

(2, 12)3 30a2

(2, 8) (2, 16)2, (4, 8) 210e2
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[34] Á. Lozano-Robledo,On the field of definition of p-torsion points on elliptic curves over the ra-
tionals, Math. Ann. 357 (2013), no. 1, 279–305, DOI 10.1007/s00208-013-0906-5. MR3084348

[35] R. S. Maier, On rationally parametrized modular equations, J. Ramanujan Math. Soc. 24
(2009), no. 1, 1–73. MR2514149

[36] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), no. 2, 129–162, DOI
10.1007/BF01390348. MR482230

[37] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres (French),
Invent. Math. 124 (1996), no. 1-3, 437–449, DOI 10.1007/s002220050059. MR1369424
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