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TORSION OF RATIONAL ELLIPTIC CURVES
OVER CUBIC FIELDS

ENRIQUE GONZÁLEZ-JIMÉNEZ, FILIP NAJMAN AND JOSÉ M. TORNERO

ABSTRACT. Let E be an elliptic curve defined over Q.
We study the relationship between the torsion subgroup
E(Q)tors and the torsion subgroup E(K)tors, where K is
a cubic number field. In particular, we study the number of
cubic number fields K such that E(Q)tors ̸= E(K)tors.

1. Introduction. Let K be a number field. The Mordell-Weil
theorem states that the set of K-rational points of an elliptic curve
E defined over K is a finitely generated abelian group, that is, E(K) ≃
E(K)tors ⊕ Zr, where E(K)tors is the torsion subgroup and r is the
rank. Moreover, it is well known that E(K)tors ≃ Cm × Cn for two
positive integers n and m, where m divides n and where Cn is a cyclic
group of order n hereafter.

Let d be a positive integer. The set Φ(d) of possible torsion
structures of elliptic curves defined over number fields of degree d has
been studied in depth by several authors. The case d = 1 was obtained
by Mazur [15, 16]:

Φ(1) = {Cn | n = 1, . . . , 10, 12} ∪ {C2 × C2m | m = 1, . . . , 4} .

The case d = 2 was completed by Kamienny [9] and Kenku and
Momose [13]. There are no other cases where Φ(d) has been completely
determined.

The second author [18] has extended this study to the set ΦQ(d) of
possible torsion structures over a number field of degree d of an elliptic
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curve defined over Q. He has obtained a complete description of ΦQ(2)
and ΦQ(3). For convenience, we will state here only the latter set:

ΦQ(3) = {Cn | n = 1, . . . , 10, 12, 13, 14, 18, 21}
∪ {C2 × C2m | m = 1 . . . , 4, 7} .

Fix a possible torsion structure over Q, say G ∈ Φ(1). Recently,
in [5], the set ΦQ(2, G) of possible torsion structures over a quadratic
number field of an elliptic curve defined over Q such that E(Q)tors ≃
G ∈ Φ(1) was determined. The first goal of this paper is giving a
complete description (see Theorem 1.2) of ΦQ(3, G), as was done in [5,
Theorem 2] for the case d = 2.

Moreover, in [6], the first and third authors obtained, for d = 2 and
for all G ∈ Φ(1), the set

HQ(d,G) = {S1, . . . , Sn}

where, for any i = 1, . . . , n, Si = [H1, . . . , Hm] is a list, with Hi ∈
ΦQ(d,G) \ {G}, and there exists an elliptic curve Ei defined over Q
such that:

• Ei(Q)tors = G.
• There are number fields K1, . . . ,Km (non-isomorphic pairwise)
of degree d with Ei(Kj)tors = Hj , for all j = 1, . . . ,m.

Note that we are allowing the possibility of two (or more) of the Hj

to be isomorphic. From these results, we obtain the following corollary
[6, 19].

Corollary 1.1. If E is an elliptic curve defined over Q, then there
are at most four quadratic fields Ki, i = 1, . . . , 4 (non-isomorphic
pairwise), such that E(Ki)tors ̸= E(Q)tors, that is,

max
G∈Φ(1)

{
#S | S ∈ HQ(2, G)

}
= 4.

Here, we obtain the equivalent description for the case d = 3, that
is, we give a complete description of HQ(3, G) for a given G ∈ Φ(1) (see
Theorem 1.4). Precisely, the main results of this paper are as follows.
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Theorem 1.2. For G ∈ Φ(1), the set ΦQ(3, G) is the following :

G ΦQ(3, G)
C1 {C1, C2, C3, C4, C6, C7, C13, C2 × C2, C2 × C14}
C2 {C2, C6, C14}
C3 {C3, C6, C9, C12, C21, C2 × C6}
C4 {C4, C12}
C5 {C5, C10}
C6 {C6, C18}
C7 {C7, C14}
C8 {C8}
C9 {C9, C18}
C10 {C10}
C12 {C12}

C2 × C2 {C2 × C2, C2 × C6}
C2 × C4 {C2 × C4}
C2 × C6 {C2 × C6}
C2 × C8 {C2 × C8}

Remark 1.3. The elements of the sets ΦQ(3, G) were actually found
using the computations that can be found in the appendix. These
computations also prove that all the listed groups actually are in
ΦQ(3, G). The main part of our work has therefore been to prove that
there were indeed no more groups in these sets.

Theorem 1.4. Let E be an elliptic curve defined over Q. Then:

(i) There is at most one cubic number field K, up to isomorphism,
such that

E(K)tors ≃ H ̸= E(Q)tors,

for a fixed H ∈ ΦQ(3).
(ii) There are at most three cubic number fields Ki, i = 1, 2, 3 (non-

isomorphic pairwise), such that

E(Ki)tors ̸= E(Q)tors.

Moreover, the elliptic curve 162b2 is the unique rational elliptic
curve where the torsion grows over three non-isomorphic cubic
fields.
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(iii) Let G ∈ Φ(1) be such that ΦQ(3, G) ̸= {G}. Then the set HQ(3, G)
consists of the following elements (the third row is h = #S, for
each S ∈ HQ(3, G)):

G HQ(3, G) h

C1

C2

1
C4
C6
C2 × C2
C2 × C14
C2, C3

2

C2, C7
C2, C13
C3, C4
C3, C2 × C2
C4, C7
C7, C2 × C2
C2, C3, C7 3

G HQ(3, G) h

C2
C6 1C14

C3

C6 1C12
C2 × C6
C6, C9 2C6, C21

C4 C12 1
C5 C10 1
C6 C18 1
C7 C14 1
C9 C18 1

C2 × C2 C2 × C6 1

The best previously known result [8, Lemma 3.3] stated that the
torsion subgroup of a rational elliptic curve grows strictly in only
finitely many cubic number fields.

Notation 1.5. Please note that, in the sequel, for examples and precise
curves we will use the Antwerp-Cremona tables and labels [1, 3]. We
will write G = H (respectively, G < H or G ≤ H) for the fact that G
is isomorphic to H (or to a subgroup of H) without further details on
the precise isomorphism.

2. Auxiliary results. We will fix once and for all some notation.
We will use a short Weierstrass equation for an elliptic curve E,

E : Y 2 = X3 +AX +B, A,B ∈ Z,

with discriminant ∆.

For such an elliptic curve E and an integer n, let E[n] be the
subgroup of all points whose order is a divisor of n (over Q), and
let E(K)[n] be the set of points in E[n] with coordinates in K, for
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a number field K. Let us recall the following well-known result [21,
Chapter III, subsection 8.1.1].

Proposition 2.1. Let E be an elliptic curve over a number field K. If
Cm×Cm ≤ E(K), then K contains the cyclotomic field Q(ζm) generated
by the mth roots of unity.

Let us fix the set-up, following [18]. Let K/Q be a cubic extension,
and let L be the normal closure of K over Q. Finally, let M be the
only subextension Q ⊂ M ⊂ L such that [L : M ] = 3. Therefore, we
have two possible situations:

• The extension K/Q is Galois. Then, Q = M and K = L.
• The extension K/Q is not Galois. Then, we have:

L

2

@@
@@

@@
@@

K

M

3

��������������

2 @@
@@

@@
@@

Q

3

��������������

Remark 2.2. Let α ∈ Q. If there is some β ∈ K with α = β2, then
β ∈ Q.

Now we will recall some results from [18] which will come in handy.

Proposition 2.3. Let E be an elliptic curve defined over Q, K, L and
M as above, G ∈ ΦQ(1) and H ∈ ΦQ(3) such that E(Q)tors ≃ G and
E(K)tors ≃ H.

(i) If G has a non-trivial 2-Sylow subgroup, G and H have the same
2-Sylow subgroup [18, Lemma 8].

(ii) If C4 ̸≤ G, then C8 ̸≤ H and, if C4 ≤ H, then M = Q(i) and
∆ ∈ (−1) · (Q∗)2 [4], [18, Corollary 12].
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(iii) E(K)[5] = E(Q)[5] [18, Lemma 21].
(iv) If H = C21, then E is the elliptic curve 162b1 and K = Q(ζ9)

+

[18, Theorem 2].
(v) If G = C7, then H ̸= C2 × C14 [18, Proof of Proposition 29].
(vi) If E(M) has no points of order 3, neither does E(L) [18, Lemma

13].

Also, some results on isogenies will be needed:

Proposition 2.4. Let E be an elliptic curve defined over Q, K and L
as above.

(i) Assume that E has a rational n-isogeny. Then either 1 ≤ n ≤ 19,
or n ∈ {21, 25, 27, 37, 43, 67, 163} [10, 11, 12, 16].

(ii) Assume that n is odd and not divisible by 3. If E(K) has a
point of order n, then E has a rational isogeny of degree n
[18, Lemma 18].

(iii) If F is a number field and E has two independent isogenies over
F with degrees n and m, E is isogenous (over F ) to an elliptic
curve with an mn-isogeny [18, Lemma 7].

(iv) If K = L, n is an odd integer and E(K) has a point of order n,
then E has a rational n-isogeny [18, Lemma 19].

(v) Let F be a quadratic number field, n an odd integer and E/Q
an elliptic curve such that Cn ≤ E(F ). Then E has a rational
n-isogeny [18, Lemma 5].

(vi) Assume that E(K) has a point of order 9. Then either E/Q has a
9-isogeny or it has two independent 3-isogenies [18, Proposition
14].

Lemma 2.5. Let p be a prime, f a p-isogeny on E/Q, and let ker(f)
be generated by P . Then the field of definition Q(P ) of P (and all of
its multiples) is a cyclic (Galois) extension of Q of order dividing p−1.

Proof. First note that the fact that F = Q(P ) is Galois over Q
follows immediately from the Galois-invariance of ⟨P ⟩. Let χ be the
character of the isogeny,

χ : Gal (F/Q) −→ Aut (⟨P ⟩).
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which, to each element of Gal (F/Q), adjoins its action on ⟨P ⟩. It is
easy to check that this is a homomorphism.

Suppose that χ is not an injection. Then there exists an element
σ, not the identity, such that χ(σ) = id, so ⟨σ⟩ acts trivially on P .
Denoting F0 = Fσ (the fixed field of ⟨σ⟩), every automorphism of
Gal (F/F0) fixes P , and hence P is F0-rational, which is in contradiction
with the minimality of F .

Since Gal (F/Q) is isomorphic to a subgroup of Aut ⟨P ⟩, which is
isomorphic to Cp−1, we are finished. �

Lemma 2.6. If E(K) has a point of order 3 over a cubic field K, then
E has a 3-isogeny over Q.

Proof. E(L) has a point of order 3, so E(M) has a point of order 3
from Proposition 2.3 (vi). And, by Proposition 2.4 (v), E has a 3-
isogeny over Q. �

Lemma 2.7. If E(K) has a point of order 9, then E(Q) has a point
of order 3.

Proof. By Proposition 2.4 (vi), E/Q has either an isogeny of degree 9
or two isogenies of degree 3.

First, suppose it has two isogenies of degree 3 and no 3-torsion.
Then it follows that Q(E[3]) is a biquadratic field and the intersection
of Q(E[3]) and K must be trivial (that is, Q), which contradicts the
fact that E(K) has nontrivial 3-torsion. Hence, E(Q) has a 3-torsion
point.

Now suppose E/Q has a 9-isogeny f , such that ker(f) = ⟨P ⟩, and
such that P is K-rational. Then the isogeny character

χ : Gal (K/Q) −→ Aut (⟨P ⟩)

sends the generator σ of Gal (K/Q) into an element of order 3 in
Aut (⟨P ⟩), i.e., into [4, 7]. Both of these act trivially on ⟨3P ⟩, implying
that E(Q) has nontrivial 3-torsion. �

Remark 2.8. Now we will consider the case where we have K1 and
K2 as two different cubic number fields. Let us write, as usual, K1K2
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for the compositum field of both extensions. Then one of the following
two situations hold:

• [K1K2 : Q] = 9.
• [K1K2 : Q] = 6. In this case, K1 and K2 are isomorphic and
K1K2 is the Galois closure of both fields over Q.

3. Proof of Theorem 1.2. Note that, from Proposition 2.3 (i), if
G = C2n, for some n ̸= 0, then C2 × C2 ̸⊂ H.

Also from Proposition 2.3 (i) and the description of ΦQ(3), we can
solve the non-cyclic cases from Theorem 1.2 easily, as we know that

ΦQ(3, C2 × C2n) ≤

{
{C2 × C2, C2 × C6, C2 × C14} if n = 1,

{C2 × C2n} if n ̸= 1.

The only case that will not happen and we cannot immediately
discard is G = C2 ×C2, H = C2 ×C14. But this case cannot happen as,
from Proposition 2.4 (ii), (iii), that would imply E has a 28-isogeny,
contradicting Proposition 2.4 (i). This finishes the non-cyclic case.

Let us move therefore to the cyclic case. The groups H from ΦQ(3)
that do not appear in some ΦQ(3, G), with a G < H and G cyclic can be
ruled out from ΦQ(3, G), most of the times using the previous results.
In Table 1, we indicate:

• with (i)–(vi), which part of Proposition 2.3 is used,
• with (2.7), the case is ruled out from Lemma 2.7,
• with −, the case is ruled out because G ̸⊂ H,
• with X, the case is possible (and in fact, it occurs).

Table 1 (row = H, column = G) deals with case G being cyclic.
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Table 1.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C12
C1 X − − − − − − − − − −
C2 X X − − − − − − − − −
C3 X − X − − − − − − − −
C4 X (i) − X − − − − − − −
C5 (iii) − − − X − − − − − −
C6 X X X − − X − − − − −
C7 X − − − − − X − − − −
C8 (ii) (i) − (i) − − − X − − −
C9 (2.7) − X − − − − − X − −
C10 (iii) (iii) − − X − − − − X −
C12 (?) (i) X X − (i) − − − − X
C13 X − − − − − − − − − −
C14 (?) X − − − − X − − − −
C18 (2.7) (2.7) (?) − − X − − X − −
C21 (iv) − X − − − − − − − −

C2 × C2 X (i) − − − − − − − − −
C2 × C4 (?) (i) − (i) − − − − − − −
C2 × C6 (?) (i) − − − (i) − − − − −
C2 × C8 (ii) (i) − (i) − − − (i) − − −
C2 × C14 X (i) − − − − (v) − − − −

Let us now discard the remaining cases.

The case G = C1, H = C12. In this case, from Proposition 2.3 (ii),
(vi), we already know that M = Q(i) and E(M)[3] ̸= {O}. Again, as
above, having points of order 3 in both M and K implies that these
are independent points, and hence, E[3](L) ≃ C3 × C3, from which it
follows that M = Q(ζ3), which is a contradiction.

The case G = C1, H = C14. In this case, E must have a rational
7-isogeny, from Proposition 2.4 (ii). Then, from Lemma 2.5, we know
that K is a cyclic cubic Galois extension; hence, K = L. Under these
circumstances, E(K)[2] cannot be C2, as K is either the splitting field
of X3 + AX + B (in which case E(K)[2] = C2 × C2) or is irreducible
over K, in which case there are no points of order 2 in E(K).
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The case G = C1, H = C2 × C4. Assume our curve is given in
Weierstrass short form

Y 2 = X3 +AX +B.

If G is cyclic and H is not, K must be the splitting field of
X3+AX+B. So, in this case, Q = M , and K = L, but this contradicts
Proposition 2.3 (ii).

The case G = C1, H = C2 ×C6. As in the previous case, Q = M , and
K = L. But there are points of order 3 in E(L), so E(M)[3] ̸= {O},
but this contradicts G = C1, as Q = M .

The case G = C3, H = C18. As we gain exactly one 2-torsion point in
the passing from Q to K, we already know that K is not Galois and,
in fact, L must be the splitting field of X3 + AX + B. Then, from
Lemma 2.5 and Proposition 2.4 (vi), we have that E(Q) must have two
isogenies of degree 3.

Now we look at how Gal (L/Q) acts on E[9]. The L-rational points
have to be sent to L-rational points. So if P is an L-rational point of
order 9, the generators of Gal (L/Q) cannot both send P to a multiple
of P , because this would imply that ⟨P ⟩ is Gal (L/Q)-invariant (and
hence, Gal (Q/Q)-invariant), which would imply a 9-isogeny over Q. So
this means that E[9](L) is strictly larger than C9. The only possibility
is that E[9](L) = C3 × C9, and this implies M = Q(

√
−3) because of

Proposition 2.1.

As L is the splitting field of X3 + AX + B, this really implies
E(L)tors ≤ C6 × C18. Moreover, as the quadratic subextension of L
is Q(

√
−3), L is a pure cubic field and our curve is a Mordell curve

Y 2 = X3 + n, for some n ∈ Z. But the only elliptic curve with j-
invariant 0 defined over Q which has full 3-torsion over Q(

√
−3) is

27a1 (and also its −3 twist), and by simply computing that this curve
has L-torsion C6 × C6, we are finished.

4. Proof of Theorem 1.4.

Proof of (i). Let E be an elliptic curve defined over Q such that
E(Q)tors ≃ G ∈ Φ(1) and H ∈ ΦQ(3). Let us prove that there is at
most one cubic number field K such that E(K)tors ≃ H ̸= G.
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First, let H = G × Cm be such that gcd(|G|,m) = 1. Suppose
that there exist two cubic fields K1 and K2 such that E(Ki)tors ≃ H,
i = 1, 2. Then Cm×Cm ≤ E(L)tors, where L is the degree 9 number field
obtained by composition of K1 and K2. Therefore, Q(ζm) ⊂ L, which
implies that φ(m) divides 9. This eliminates the following possibilities:

• G = C1 and H ∈ {C3, C4, C6, C7, C13};
• G = C2 and H ∈ {C6, C14};
• G = C3 and H ∈ {C12, C21};
• G = C4 and H = C12;
• G = C2 × C2 and H = C2 × C6;

On the other hand, if the order of G is odd, then there is at most
one H of even order with G < H. The cubic field is the one defined by
the 2-division polynomial of the elliptic curve. This argument therefore
crosses out the cases:

• G = C1 and H ∈ {C2, C2 × C2, C2 × C14};
• G = C3 and H ∈ {C6, C2 × C6};
• G = C5 and H = C10;
• G = C7 and H = C14;
• G = C9 and H = C18.

The remaining cases to be dealt with are G = C3 with H = C9 and
G = C6 with H = C18. These are essentially the same since C6 = C2×C3
and C18 = C2 × C9. Assume we have ⟨P ⟩ ≃ C9, ⟨Q⟩ ≃ C9, where P and
Q are defined over two non-isomorphic cubic fields. Therefore, P is not
a multiple of Q and Q is not a multiple of P and C3 × C3 ≤ ⟨P,Q⟩.
This is impossible, since both P and Q would be defined over a field of
degree 9, which cannot contain Q(ζ3).

This proves the first statement of Theorem 1.4.

Proofs of (ii) and (iii). First note that if

E : Y 2 = f(X)

is an elliptic curve defined over Q such that E(Q)tors ≃ G has odd
order, then f(X) is an irreducible cubic polynomial. Now, denote by
K the cubic field defined by f(X), then H = E(K)tors satisfies that
G ̸= H and H is of even order. Moreover, H is the unique group of



1910 GONZÁLEZ-JIMÉNEZ, NAJMAN AND TORNERO

even order such that H ∈ S, for any S ∈ HQ(3, G) because f(X) is the
2-division polynomial of E.

Now, for any G ∈ Φ(1), let us construct the elements S ∈ HQ(3, G)
in ascending order of #S. In Table 1 (see the Appendix) we show
examples for all possible cases of S (after taking into account the
preliminary remark) for any G ∈ Φ(1). Now, by (i), we know that there
are not repeated elements in any S ∈ HQ(3, G). Then the possible cases
with #S > 1 come from G = C1, C2, C3:

G = C1

We show examples in Table 1 for any S ∈ HQ(3, C1) with #S = 2
except for the following cases:

[C4, C13], [C3, C6], [C6, C7], [C6, C13],
[C2 × C2, C13], [C2 × C14, C3], [C2 × C14, C7], [C2 × C14, C13].

• As for [C4, C13], if such a curve existed, then it would have to
have discriminant −Y 2 (as it gains 4-torsion, see Proposition
2.3 (ii)) for some rational Y . On the other hand, the curve
must have a 13-isogeny over Q, which implies its discriminant
is of the form [18, Lemma 27]

∆ = � · t(t2 + 6t+ 13),

where � is a rational square. Therefore, such a curve would
give a rational non-trivial (meaning Y ̸= 0) solution of the
equation

Y 2 = X3 − 6X2 + 13X,

but one easily checks that there are none.
• Looking at [C3, C6] we find that E gains full 3-torsion over the
compositum of two cubic extensions, K1 and K2, because the
fields cannot be isomorphic; hence, the points of order 3 in K1

and K2 are independent. This implies Q(ζ3) ⊂ K1K2, which is
impossible as [K1K2 : Q] = 9 in this case.

• Let us look at the pair [C6, C7]. The existence of C6 implies
a 3-isogeny over Q and the existence of C7 implies a rational
7-isogeny; hence, E has a 21-isogeny. Therefore, E is a twist
of an elliptic curve in the 162b isogeny class. It can be seen
that only one elliptic curve in each of the four families of twists
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gains 7-torsion in a cubic extension. Thus, there are in fact a
total of four curves that we need to check. For each of the four
curves we can check whether the curve gains any 3-torsion in
the fields where it gains 2-torsion, and discard all the cases.

• The case [C6, C13] can be ruled out as, from Proposition 2.4 (iii)
and Lemma 2.6, it would imply the existence of a curve with a
rational 39-isogeny, contradicting Proposition 2.4 (i).

• The case [C2 × C2, C13] is very similar to the first one, the only
difference being that, gaining full 2-torsion over a cubic field,
the discriminant must be a square. Anyway, the corresponding
equation

Y 2 = X3 + 6X2 + 13X,

still has no solutions with Y ̸= 0.
• Let us look at the case [C2 × C14, C3]. A curve featuring these
torsion extensions would have a 21-isogeny from Proposition
2.4 (ii), (iv) and Lemma 2.6 and also would gain full 2-torsion
over a cubic field, so as in the previous case its discriminant
must be a square. But the elliptic curves with a 21-isogeny
have discriminant −2 ·�, where � is a rational square [1, pages
78–80]. Hence, this case is not possible.

• We can remove the case [C2 × C14, C7], similarly as the second
case. In this case, we would have two cubic extensions K1

and K2 which must verify [K1K2 : Q] = 9, as X3 + AX + B
splits completely in one of them and remains irreducible in the
other. As Q(ζ7) ⊂ K1K2 using Proposition 2.1 above, we reach
a contradiction.

• The last case, that of [C2 × C14, C13], is also removable as it
would similarly imply the existence of a rational elliptic curve
with a 91-isogeny.

Now, we need to prove that the only S ∈ HQ(3, C1) with #S = 3 is
[C2, C3, C7]. For this purpose we have to remove the cases:

[C2, C3, C13], [C2, C7, C13], [C3, C4, C7], [C2 × C2, C3, C7].

• The first case can be ruled out as [C6, C13] above, for it implies
the existence of a rational curve with a 39-isogeny.

• The second case, as [C2 × C14, C13] above, would imply the
existence of a rational elliptic curve with a 91-isogeny. Hence,
it cannot happen.
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• The third case is eliminated by noting that the discriminant of
such a curve should be −Y 2 (for it gains 4-torsion) and −2 ·�,
where � is a rational square (for it has a 21-isogeny).

• The last case is similar to the case [C2 × C14, C3] above.

Looking with greater detail at the case [C2, C3, C7] we find that if a
curve gains torsion in such a way in three non-isomorphic cubic fields,
it must have a 21-isogeny and in fact (as in the [C6, C7] case) it can only
be a very precise curve a family of twists in the 162b isogeny class.
There are only four such curves and 162b2 is the only one that grows
strictly in three cubic extensions.

G = C2

The only case to discard here is [C6, C14]. If such a curve (say E)
existed, it would follow that E would have a 3-isogeny and 7-isogeny,
and hence, a 21-isogeny. E would also have to contain C2, since the odd
isogeny cannot kill this torsion. But there do not exist elliptic curves
with 21-isogenies and nontrivial 2-torsion over Q [1, pages 78–80].

G = C3

We show examples in Table 1 for any S ∈ HQ(3, C3) with #S = 2,
except for the cases:

[C9, C12] , [C12, C21] , [C2 × C6, C9] , [C2 × C6, C21] .

• [C9, C12]. From Proposition 2.4 (vi), our curve has either a 9-
isogeny or two independent 3-isogenies and Q(E[3]) = Q(ζ3).
Moreover, from Proposition 2.3 (iii), ∆ ∈ (−1) · (Q∗)2.

Assume that E has two independent 3-isogenies andQ(E[3]) =
Q(ζ3). From [20, page 147], we get

∆ = −216
b3(h6 − 6h2b2 + 12b3)

h6
, b, h ∈ Q.

Note there is a misprint in the original article: h4 in the
numerator should be replaced by h6.

As ∆ = −y2 for some y ∈ Q, the existence of E implies there
are b, h, y ∈ Q with(

y

bh

)2

= 6

(
b

h2

)[
1− 6

(
b

h2

)2

− 12

(
b

h2

)3]
,
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that is a rational point on the curve

Y 2 = 6X
(
1− 6X2 − 12X3

)
,

but its Mordell-Weil group is trivial, and the trivial points do
not yield an elliptic curve E.

So we are bound to assume that E has a 9-isogeny. From
[7, Appendix], it follows that E is a twist of u2 = v3 + av + b,
where

a = −3x(x3 − 24), b = 2(x6 − 36x6 + 216),

for some x ∈ Q. Then the discriminant of this curve is

21236(c3 − 27)u12,

where the twelfth power may appear because of the twisting.
As this should be in (−1) · (Q∗)2, it should give a point on

Y 2 = X3 − 27.

The points in this curve can be easily computed (we have
done it with Magma [2]); there is only the point at infinity and
a point of order 2 that discriminant 0, so we are done.

• Second and fourth cases are not possible, as the only curve
whose torsion grows to C21 is 162b1, and this curve fits neither
of these cases (see Table 1).

• [C2 × C6, C9]. This case parallels the first one. The only formal
change is that, as we gain full 2-torsion in a cubic extension,
∆ ∈ (Q∗)2. Hence, the same arguments lead us to state that
such a curve must yield either a point on

Y 2 = −6X
(
1− 6X2 − 12X3

)
,

if it has two independent rational 3-isogenies, or a point on

Y 2 = X3 + 27,

should it have a rational 9-isogeny. As both cases can be
checked to be impossible, we are finished.

Finally, we see that there are no S ∈ HQ(3, C3) with #S = 3. Such
S should have two groups of odd order. These must be C9 and C21.
But again the unique elliptic curve over Q with C21 over a cubic field
is 162b1 and, for this curve, this is not the case (see Table 1).



1914 GONZÁLEZ-JIMÉNEZ, NAJMAN AND TORNERO

APPENDIX

A. Computations. Let G ∈ Φ(1), S = [H1, . . . , Hm] ∈ HQ(3, G),
E an elliptic curve defined over Q such that E(Q)tors = G, and let
K1, . . . ,Km be cubic fields, such that

E(Ki)tors = Hi for i = 1, . . . ,m.

Table 1 shows an example of every possible situation, where

• the first column is G,
• the second column is S ∈ HQ(3, G),
• the third column is #S,
• the fourth column is the label of the elliptic curve E with
minimal conductor satisfying the conditions above,

• the fifth column displays a defining cubic polynomial corre-
sponding to the respective Ki of Hi in S,

• the sixth column displays the discriminant of the corresponding
Ki.

Table 1: h = #S for S ∈ HQ(3, G).

G HQ(3, G) h label cubics ∆

C1

C2

1

11a2 x3 − x2 + x+ 1 −44
C4 338b2 x3 − x2 − 4x+ 12 −676
C6 108a2 x3 − 2 −108
C2 × C2 196a1 x3 − x2 − 2x+ 1 49
C2 × C14 1922c1 x3 − x2 − 10x+ 8 961

C2, C3

2

19a2
x3 − 2x− 2

x3 − x2 − 6x− 12
−76
−1083

C2, C7 294a1
x3 − x2 − 2x− 6
x3 − x2 − 2x+ 1

−1176
49

C2, C13 147b1
x3 − x2 + 5x+ 1
x3 − x2 − 2x+ 1

−588
49

C3, C4 162d2
x3 − 2

x3 − 3x− 4
−108
−324

C3, C2 × C2 196b2
x3 − x2 + 5x+ 1
x3 − x2 − 2x+ 1

−588
49

C4, C7 338b1
x3 − x2 − 4x+ 12
x3 − x2 − 4x− 1

−676
169

(Continued on next page)
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Table 1. (Continued from previous page)

G HQ(3, G) h label cubics ∆

C7, C2 × C2 3969a1
x3 − 21x− 35
x3 − 21x− 28

3969
3969

C2, C3, C7 3 162b2

x3 − 3x− 10
x3 − 2

x3 − 3x− 1

−648
−108
81

C2
C6 1

14a3 x3 − 7 −1323
C14 49a3 x3 − x2 − 2x+ 1 49

C3

C6
1

19a1 x3 − 2x− 2 −76
C12 162d1 x3 − 3x− 4 −324
C2 × C6 196b1 x3 − x2 − 2x+ 1 49

C6, C9
2

19a3
x3 − 2x− 2

x3 − x2 − 6x+ 7
−76
361

C6, C21 162b1
x3 − 3x− 10
x3 − 3x− 1

−648
81

C4 C12 1 90c1 x3 − x2 − 3x− 3 −300

C5 C10 1 11a1 x3 − x2 + x+ 1 −44

C6 C18 1 14a4 x3 − x2 − 2x+ 1 49

C7 C14 1 26b1 x3 − x− 2 −104

C8 0

C9 C18 1 54b3 x3 + 3x− 2 −216

C10 0

C12 0

C2 × C2 C2 × C6 1 30a6 x3 − 3 −243

C2 × C4 0

C2 × C6 0

C2 × C8 0
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