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Abstract Let E be an elliptic curve defined over Q and let G = E(Q)tors be the associated
torsion group. In a previous paper, the authors studied, for a given G, which possible groups
G ≤ H could appear such that H = E(K )tors, for [K : Q] = 2. In the present paper, we
go further in this study and compute, under this assumption and for every such G, all the
possible situations where G �= H . The result is optimal, as we also display examples for
every situation we state as possible. As a consequence, the maximum number of quadratic
number fields K such that E(Q)tors �= E(K )tors is easily obtained.
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1 Introduction

Let E be an elliptic curve defined over a number field L . The Mordell-Weil Theorem states
that the set of L-rational points, E(L), is a finitely generated abelian group. So it canbe
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written as E(L) = E(L)tors ⊕ Zr , for some non-negative integer r (called the rank of E(L))
and some finite torsion subgroup E(L)tors. It is well known that there exist two positive
integers n,m such that n|m and E(L)tors is isomorphic to Cn × Cm , where Cn is the cyclic
group of order n [20].

Through this paper, we will often write G = H (respectively G ≤ H or G < H ) for the
fact that G is isomorphic to H (repectively, isomorphic to a subgroup of H or to a proper
subgroup of H ) without further detail on the precise isomorphism.

We define some useful sets for the sequel:

• Let �(d) be the set of possible groups that can appear as the torsion subgroup of an
elliptic curve defined over any number field L of degree d .

• Let �Q(d) be the set of possible groups that can appear as the torsion subgroup over a
number field of degree d , of an elliptic curve E defined over the rationals.

• LetG ∈ �(1). We will write�Q(d,G) the set of possible groups that can appear as the
torsion subgroup over any number field L of degree d , of an elliptic curve E defined
over the rationals, such that E(Q)tors = G.

Connected to these sets, some known results are:

• Mazur’s landmark papers [16,17] established that

�(1) = {Cn |n = 1, . . . , 10, 12} ∪ {C2 × C2m |m = 1, . . . , 4} .

• After this, in a long series of papers by Kenku, Momose and Kamienny ending in
[10,11], the quadratic case was given a description:

�(2) = {Cn |n = 1, . . . , 16, 18} ∪ {C2 × C2m |m = 1, . . . , 6}
∪ {C3 × C3r |r = 1, 2} ∪ {C4 × C4} .

• The sets �Q(d) have been completely described by Najman [18] for d = 2, 3:

�Q(2) = {Cn |n = 1, . . . , 10, 12, 15, 16} ∪ {C2 × C2m |m = 1, . . . , 6}
∪ {C3 × C3r |r = 1, 2} ∪ {C4 × C4} ,

�Q(3) = {Cn |n = 1, . . . , 10, 12, 13, 14, 18, 21} ∪ {C2 × C2m |m = 1, . . . , 4, 7} .

• The work of Fujita [5] gave the precise list (building upon previous work of Laska and
Lorenz [15]) of torsion groups over the maximal elementary abelian 2-extension of Q,
of elliptic curves defined over the rationals. The full list of such groups will be denoted
by �Q(2∞):

�Q(2∞) = {Cn |n = 1, 3, 5, 7, 9, 15} ∪ {C2 × C2m |m = 1, . . . , 6, 8}
∪ {C3 × C3} ∪ {C4 × C4r |r = 1, . . . , 4} ∪ {C2s × C2s |s = 3, 4} .

• The set �Q(2,G), for non-cyclic G was characterized by Kwon [14].

Finally, in [7], we gave a precise description of the set �Q(2,G), for all G ∈ �(1).
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Theorem 1 For G ∈ �(1), the set �Q(2,G) is the following:

G �Q (2,G)

C1 {C1,C3,C5,C7,C9}
C2 {C2,C4,C6,C8,C10,C12,C16,C2 × C2,C2 × C6,C2 × C10}
C3 {C3,C15,C3 × C3}
C4 {C4,C8,C12,C2 × C4,C2 × C8,C2 × C12,C4 × C4}
C5 {C5,C15}
C6 {C6,C12,C2 × C6,C3 × C6}
C7 {C7}
C8 {C8,C16,C2 × C8}
C9 {C9}
C10 {C10,C2 × C10}
C12 {C12,C2 × C12}
C2 × C2 {C2 × C2,C2 × C4,C2 × C6,C2 × C8,C2 × C12}
C2 × C4 {C2 × C4,C2 × C8,C4 × C4}
C2 × C6 {C2 × C6,C2 × C12}
C2 × C8 {C2 × C8}

Let us fix now some useful notations:

• We will use letters L and F for generic number fields, whereas K will be reserved for
proper quadratic extensions of Q.

• We will denote by Q(2∞) = Q
({√

m|m ∈ Z
})
, the maximal elementary abelian 2-

extension of Q.
• Let E be an elliptic curve defined over a number field L . Without loss of generality we

can assume E is defined by a short Weierstrass form

E : Y 2 = X3 + AX + B; A, B ∈ L ,

and we will then write,

E(L) = {
(x, y) ∈ L2|y2 = x3 + Ax + B

} ∪ {O},
the set of L-rational points of E , and O its point at infinity.

• For an elliptic curve E , let �E be, as customary, its discriminant.
• For an elliptic curve E and an integer n, let E[n] be the subgroup of all points whose

order is a divisor of n (over Q), and let E(L)[n] be the set of points in E[n] with
coordinates in L , for any number field L (including the case L = Q).

• Under the same conditions, letQ(E[n]) be the extension generated by all the coordinates
of points in E[n].

• For an elliptic curve E defined over the rationals given by a short Weierstrass equation
E : Y 2 = X3 + AX + B, and a squarefree integer D, let ED denote its quadratic twist.
That is, the elliptic curve with the Weierstrass equation ED : DY 2 = X3 + AX + B.

Pleasemind that, in the sequel, for examples andparticular curveswewill use theAntwerp–
Cremona tables and labels [1,2].

Our aim in this paper is to go further than we did in [7]. More precisely, at the end of [7]
we posed three questions (named Problems 1, 2 and 3). Problems 1 and 3 are generalized in
the following question:

Question For a given G ∈ �(1), let S = {H1, . . . , Hn} ⊂ �Q(2,G). Find if there exists a
fixed elliptic curve E defined over the rationals and squarefree integers D1, . . . , Dn such that:

• E(Q)tors = G,
• E(Q(

√
Di ))tors = Hi , for i = 1, . . . , n,
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• G = E(K )tors for every other quadratic extension K/Q.

We will answer this question, which will imply the solution to Problems 1 and 3 in [7] as
a direct corollary.

More precisely, we will prove two main results. First, we will compute explicitly how
many quadratic extensions K/Q one can have with a proper extension of the torsion group
for a given curve, depending only on the rational torsion structure. This will be done in the
following result:

Theorem 2 Let be G ∈ �(1) and H ∈ �Q (2,G) such that G �= H. Then the number h of
possible quadratic fields K such that E(Q)tors = G and E(K )tors = H for a fixed rational
elliptic curve E is given in the following table:

G H h

C1 C3 1, 2
C5 1
C7 1
C9 1

C2 C4 1, 2
C6 1, 2
C8 1, 2
C10 1
C12 1
C16 1
C2 × C2 1
C2 × C6 1
C2 × C10 1

C3 C15 1
C3 × C3 1

C4 C8 2
C12 1
C2 × C4 1
C2 × C8 1
C2 × C12 1
C4 × C4 1

C5 C15 1

C6 C12 2
C2 × C6 1
C3 × C6 1

C8 C16 2
C2 × C8 1

C10 C2 × C10 1

C12 C2 × C12 1

C2 × C2 C2 × C4 1, 2, 3
C2 × C6 1
C2 × C8 1
C2 × C12 1

C2 × C4 C2 × C8 1, 2
C4 × C4 1

C2 × C6 C2 × C12 1
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Once this is done, we will solve a more delicate problem. We will compute, for a given
G ∈ �(1), all the possibilities for �Q(2,G) that actually appear. That is, the full set:

HQ(2,G) = {S1, . . . , Sn}
satisfying, for all i = 1, . . . , n, that

Si = [H1, . . . , Hm]

is a list, with Hj ∈ �Q(2,G)\{G}, and there exists an elliptic curve Ei defined over Q such
that:

• Ei (Q)tors = G,
• there are quadratic fields K1, . . . , Km with Ei (K j )tors = Hj , for all j = 1, . . . ,m,
• Ei (K )tors = G, for any other quadratic extension K/Q.

Note that we are admitting the possibility of two (or more) of the Hj being identical. We
describe explicitly HQ(2,G) in Theorem 3.

Theorem 3 Let be G ∈ �(1) such that �Q (2,G) �= {G}. Then:

G HQ(2,G)

C1 C3
C5
C7
C9
C3,C3
C3,C5

C2 C2 × C2
C2 × C6
C2 × C10
C2 × C2,C6
C2 × C2,C10
C2 × C6,C6
C2 × C2,C4,C4
C2 × C2,C6,C6
C2 × C2,C8,C8
C2 × C2,C4,C8
C2 × C2,C4,C12
C2 × C2,C4,C16
C2 × C6,C4,C4
C2 × C2,C4,C4,C6

C3 C15
C3 × C3

C4 C2 × C4
C2 × C8
C2 × C12
C4 × C4
C2 × C4,C12
C2 × C4,C8,C8
C2 × C8,C8,C8
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(continued)

C5 C15
C6 C2 × C6

C2 × C6,C3 × C6
C2 × C6,C12,C12

C8 C2 × C8
C2 × C8,C16,C16

C10 C2 × C10

C12 C2 × C12

C2 × C2 C2 × C4
C2 × C6
C2 × C8
C2 × C12
C2 × C4,C2 × C4
C2 × C4,C2 × C6
C2 × C4,C2 × C8
C2 × C4,C2 × C4,C2 × C4
C2 × C4,C2 × C4,C2 × C8

C2 × C4 C2 × C8
C4 × C4
C2 × C8,C4 × C4
C2 × C8,C2 × C8
C2 × C8,C2 × C8,C4 × C4

C2 × C6 C2 × C12

In particular, we obtain the following corollary:

Corollary 4 If E is an elliptic curve defined over Q, then there are at most four quadratic
fields Ki , i = 1, . . . , 4, such that E(Ki )tors �= E(Q)tors. That is,

max
G∈�(1)

{
#S|S ∈ HQ(2,G)

} = 4.

We would like to mention this last result has also been proved independently by Najman
[19]. His proof uses a very different kind of argument and, in particular, Theorems 2 and 3
do not follow from his results.

2 Some technical results

Aside from the abovemain results, a number of auxiliary results are needed for our arguments.
We already mentioned this result by Fujita:
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Theorem 5 [5, Theorem 2] Let E be an elliptic curve over Q. Then, the torsion subgroup
E(Q(2∞))tors is isomorphic to one of the following 20 groups:

CN for N = 1, 3, 5, 7, 9, 15;
C2 × C2N for N = 1, . . . , 6, 8;
C4 × C4N for N = 1, . . . , 4;
C2N × C2N for N = 3, 4;
C3 × C3.

In the same paper one can find the following useful result:

Proposition 6 [5, Proposition 11] Let E be an elliptic curve over Q such that E(Q)tors is
cyclic. Then C8 × C8 � E(Q(2∞))tors.

A classical result which could be found, for instance, in [20, Corollary 8.1.1] is the
following:

Proposition 7 Let E be an elliptic curve over a number field L. If Cm ×Cm = E[m] ≤ E(L),
then L contains the cyclotomic field generated by the m-th roots of unity.

In another paper by Fujita [4], the following two results can be found:

Theorem 8 [4, Theorem1]Let E be an elliptic curve overQ such that E(Q)tors is non-cyclic.

• If E(Q)tors = C2 × C8, then E(Q(2∞))tors = C4 × C16.
• If E(Q)tors = C2 × C6, then E(Q(2∞))tors = C4 × C12.
• If E(Q)tors = C2 × C4, then E(Q(2∞))tors ∈ {C4 × C8, C8 × C8}.
• If E(Q)tors = C2×C2, then E(Q(2∞))tors ∈ {C4×C4, C4×C8, C8×C8, C4×C12, C4×C16}.

Proposition 9 [4, Final remark]Theminimal d forwhich the followinggroups canbe realized
as E(Ld)tors with some elliptic curve E defined over Q, having non-cyclic rational torsion,
and some polyquadratic field Ld with [Ld : Q] = 2d , is:

1. d = 4 for C4 × C16.
2. d = 3 for C4 × C12.
3. d = 4 for C8 × C8.
4. For all other types, we have d = 2.

3 On 2-divisibility

In this section we are going to use two methods that allow us to decide when there exists a
point (or where to look for it) which divides by two a given point of some order. The first
method is classical in the literature of elliptic curves [12, Theorem 4.2]. It allows us to decide
if a point defined over a number field L containing Q(E[2]) is half a point over L too.

Lemma 10 Let E be an elliptic curve defined over a number field L given by

E : Y 2 = (X − α)(X − β)(X − γ ),

with α, β, γ ∈ L. For P = (x0, y0) ∈ E(L), there exists Q ∈ E(L) such that 2Q = P if
and only if x0 − α, x0 − β and x0 − γ are all squares in L.

For our concerns, this will apply specifically to the following situation:
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Proposition 11 Assume we have an elliptic curve

E : Y 2 = X (X − A)(X − B), A, B ∈ Q

and C2 × C2 ≤ E(Q)tors and there are no points of order 4 in E(Q). Then, there are 1, 2 or
3 quadratic fields K with C2 × C4 ≤ E(K )tors. All three cases can appear.

Proof Assume that the elliptic curve has C2 × C4 ≤ E(K )tors, with K = Q(
√
D). Let

us first assume that the point who gets divided by two is (0, 0). That is, there is a certain
Q ∈ E(K ) such that 2Q = (0, 0). By the previous lemma 0,−A,−B are then squares in
K . This amounts to the existence of a, b ∈ Q such that one of the mutually exclusive pairs
of equalities holds:

{−A = a2D,−B = b2} or {−A = a2,−B = b2D} or {−A = a2D,−B = b2D}.
Of these cases, there is only one possible squarefree D satisfying the conditions. The same

goes if the divided point is (A, 0) (change {A, B} for {A, A − B}) and if it is (B, 0). All in
all there can be 1, 2 or 3 quadratic extensions where the torsion contains C2 × C4.

In Table 1 (see the appendix for an explanation of the table) one can find an example for
each of the three circumstances. 
�

The second technique is taken from Jeon et al. [9]. This method allows to find, given a
point defined over a number field F , an extension L/F and a point defined over L such that
it is half of the given point.

Proposition 12 Let E be an elliptic curve defined over a number field F given by the Weier-
strass equation:

E : Y 2 = X3 + AX2 + BX + y20 ,

and P = (0, y0) ∈ E(F). Let α be a root of the quartic polynomial

q(x) = x4 − 2Ax2 − 8y0x + A2 − 4B.

Then the point Q = ((α2 − A)/2, α(α2 − A)/2 − y0) ∈ E(L), where L = F(α), and
2Q = P.

It is not difficult to check that the elliptic curve E and the one defined by the quartic
polynomial q(x), v2 = q(u), are isomorphic over F . Then, thanks to [6, Appendix A.2], we
know that q(x) splits over a quadratic extension of F for each 2-torsion point of E defined
over F .

We will apply this procedure to points of even order N . Note that if E(Q)tors is cyclic and
P, P ′ are two generators of this cyclic group, then if there exist a number field L and a point
Q ∈ E(L) with 2Q = P , then there must also be some Q′ ∈ E(L) with 2Q′ = P ′. That is,
the 2-divisibility holds for either all generators or for none of them.

3.1 The case N = 2

Lemma 13 Let

E : Y 2 = X (X2 + AX + B)

be an elliptic curve defined over Q with E(Q)tors = C2. Then, there exists a quadratic field
K with C4 ≤ E(K )tors if and only if B = s2 for some s ∈ Q.

Moreover, K = K± := Q(
√
A ± 2s) in this situation and K+ �= K−.
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Proof Using Proposition 12, with the point (0, 0), we get the roots of the corresponding
quartic polynomial q(x) which are

±
√
A ± 2

√
B.

A necessary and sufficient condition then for a point Q to exist over a quadratic field, with
2Q = (0, 0), is B = s2 for a certain s ∈ Q. Should this be the case, Q ∈ E(K )[4], with
K = Q(

√
A ± 2s).

Please note that we have implicitly assumed that there are no points of order 2 in E(K ′)
other than (0, 0) that could be divided by 2 over any quadratic field K ′. In fact, this must
always be the case, as from [7, Thm. 5 (ii)], G = C2 implies C2 × C4 � E(K ′)tors for any
quadratic field K ′.

Let us check K+ �= K− for all s. Assume K+ = K−. Then, A2 − 4s2 is a rational square.
Therefore, X2 + AX + s2 has two different rational roots. That is, C2 ×C2 ≤ E(Q), which
is a contradiction. 
�
3.2 The cases N = 4, 6, 8

Let N ≥ 4 be an integer. We are given a curve E defined over a number field L (for our
purposes it will mostly be Q, but the result is more general) and a point P ∈ E(L) of order
N , and then we take the Tate normal form of E :

Tb,c : Y 2 + (1 − c)XY − bY = X3 − bX2,

where P = (0, 0). Changing coordinates by means of

X �−→ X, Y �−→ Y + c − 1

2
x + b

2
;

we obtain a Weierstrass model:

Tb,c : Y 2 = X3 + AX2 + BX + C,

with

A = (c − 1)2 − 4b

4
, B = b(c − 1)

2
, C = b2

4
.

In particular P = (0,−b/2). Then the quartic polynomial q(x) which characterizes the
existence of Q such that 2Q = P (see Proposition 12) is now:

q(x) = x4 + 1

2
(−1 + 4b + 2c − c2)x2 + 4bx

+ 1

16
(1 + 24b + 16b2 − 4c − 16bc + 6c2 − 8bc2 − 4c3 + c4). (1)

The Tate normal form also has an important feature, as it parametrizes the different curves
defined over the rationals with a common torsion structure [8]. Precisely, if CN ≤ E(Q),
there exists t ∈ Q such that E is Q-isomorphic to Tb,c where:

• c = 0 and b = t if N = 4;
• c = t and b = t2 + t if N = 6;
• c = (2t − 1)(t − 1)/t and b = (2t − 1)(t − 1) if N = 8.
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Lemma 14 Let E be an elliptic curve defined over Q with E(Q)tors = C4. Let t ∈ Q such
that E is Q-isomorphic to Tt,0. Then, there exists a quadratic field K with E(K )tors = C8 if
and only if t = −s2 for some s ∈ Q.

Moreover, K = K± := Q(
√
1 ± 4s) in this situation and K+ �= K−.

Proof In this case, the roots of the quartic polynomial given at (1) are

√−t ± 1

2

√
1 + 4

√−t, −√−t ± 1

2

√
1 − 4

√−t .

A necessary and sufficient condition then for a point Q to exist over a quadratic field, with
2Q = (0, 0), is t = −s2 for a certain s ∈ Q. Should this be the case, Q ∈ E(K±)[8], with
K± = Q(

√
1 ± 4s).

As above, it must be (0, 0) the point in E[4] who gets divided by 2. If there were a
non-rational point P ∈ E(K ′) of order 4 over some quadratic field K ′ such that there exists
Q ∈ E(K ′) with 2Q = P , then E(K ′)tors must be a group with an element Q of order 8
which does not generate the whole group (it does not generate (0, 0) in particular), which
contradicts our assumption E(K ′)tors = C8.

If K+ = K−, then (1+4s)(1−4s) is a rational square. Therefore,�E is a rational square.
That is, C2 × C2 ≤ E(Q), which is a contradiction. 
�
Remark Note that the assumption E(K )tors = C8 is indeed necessary. Since if we relax
this hypothesis to E(K )tors ≤ C8, Lemma 14 is false: the elliptic curve 240d6 has torsion
subgroup C4 (resp. C2 × C8, C8, C8) over Q (resp. Q(

√−1), Q(
√
6), Q(

√−6)) (see Table 1).

Lemma 15 Let E be an elliptic curve defined over Q with E(Q)tors = C6. Let t ∈ Q such
that E is Q-isomorphic to Tt2+t,t . Then, there exists a quadratic field K with C12 ≤ E(K )tors

if and only if t = −s2 for some s ∈ Q.
Moreover, K = K± := Q(

√
(1 ± s)(1 ∓ 3s)) in this situation and K+ �= K−.

Proof In this case, the roots of the polynomial given at (1) are

√−t ± 1

2

√
(1 + t)(1 − 4

√−t − 3t), −√−t ± 1

2

√
(1 + t)(1 + 4

√−t − 3t).

A necessary and sufficient condition then for a point Q to exist over a quadratic field, with
2Q = P , is t = −s2 for a certain s ∈ Q. Should this be the case: Q ∈ E(K±)[12], with
K± = Q(

√
(1 ± s)(1 ∓ 3s)).

Again, the point in E[6] who gets divided by 2 must be rational. This time it is easier,
as the only group in �Q(2, C6) with elements of order 12 is precisely C12, so the only two
available points are (0, 0) and its inverse, which yield the same situation.

If K+ = K− for some s, there exists r ∈ Q with

(1 + s)(1 − 3s) = r2(1 − s)(1 + 3s).

That is to say, the equation

C : z2 = (1 − s2)(1 − 9s2)

has a non-trivial rational solution, s �= 0,±1,±1/3 (these solutions correspond to Tate
models which do not yield elliptic curves). C defines then an elliptic curve with at least 8
rational points: 6 trivial ones, and 2 more at infinity. But C is Q-isomorphic to 24a1, whose
Mordell group is C2×C4. Therefore, the affine points inC(Q) correspond to the trivial points.


�
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Lemma 16 Let E be an elliptic curve defined over Q with E(Q)tors = C8. Let t ∈ Q such
that E is Q-isomorphic to T(2t−1)(t−1),(2t−1)(t−1)/t . Then, there exists a quadratic field K
with C16 ≤ E(K )tors if and only if t = s2/(s2 + 1) for some s ∈ Q.

Moreover, K = K± := Q(
√

(s4 − 1)(−1 ± 2s + s2)) in this situation and K+ �= K−.

Proof In this case, the roots of the polynomial given at (1) are
√
t (1 − t) ± 1

2t

√
(1 − 2t)(1 − 6t + 4t2 − 4t

√
t (1 − t)),

−√
t (1 − t) ± 1

2t

√
(1 − 2t)(1 − 6t + 4t2 − 4t

√
t (1 − t)).

A necessary and sufficient condition then for a point Q to exist over a quadratic field, with
2Q = P , is t (1 − t) = s2 for a certain s ∈ Q. This equation is a genus zero curve again,
parametrized by:

t = r2

r2 + 1
, s = r

r2 + 1
,

for some r ∈ Q. Should this be the case, Q ∈ E(K±)[12], with
K± = Q(

√
(r4 − 1)(−1 ± 2r + r2)).

Once more, the point in E[8] who gets divided by 2 must be rational, as the only group
in �Q(2, C8) with elements of order 16 is C16.

Finally, let us check K+ �= K− for all s. If not, there is some r ∈ Q with

(s4 − 1)(−1 + 2s + s2) = r2(s4 − 1)(−1 − 2s + s2)

for a certain s. That implies the equation

C : z2 = (−1 + 2s + s2)(−1 − 2s + s2)

has a non-trivial rational solution (non-trivial meaning s �= 0), as the trivial solutions match
the Tate models which do not yield elliptic curves. C defines an elliptic curve with at least 4
rational points (2 trivial, 2 at infinity), but in fact it is isomorphic to the curve 32a2 whose
Mordell group is C2 × C2. Hence the affine points in C(Q) are just the trivial points and we
are done. 
�

4 Proof of Theorem 2

For a given G ∈ �(1) and H ∈ �Q (2,G), we calculate the number h of possible quadratic
fields K such that, for a given rational elliptic curve E with E(Q)tors = G, we have
E(K )tors = H .

4.1 The cyclic case

• Clearly, if H = C2 ×C2m for some integerm, this can only happen over the quadratic field
K = Q(

√
�E ). Note that K is actually always a quadratic extension, as Q(E[2]) �= Q.

This rules out the cases:

◦ G = C2, H = C2 × C2m , with m = 1, 3, 5;
◦ G = C4, H = C2 × C4m , with m = 1, 2, 3;
◦ G = Cr , H = C2 × Cr , with r = 6, 8, 10, 12.
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• AssumeG = C2 and H ≤ C4n . Lemma 13 shows that there can be 1 or 2 quadratic fields in
which this situation holds.When H = C4, C8 in fact both things can happen (see examples
in Table 1 at the appendix). However, for the remaining cases, the situation can only hold
in one quadratic field. Let us do with a little detail the case H = C12, as the case H = C16
is analogous. So we are assuming G = C2 and H = C12 for two different quadratic fields.
Then, as we also have a quadratic field where the full 2-torsion appears, C6 × C12 should
be a subgroup of one of the groups in �Q(2∞), and that is not possible from Theorem 5.

• If G = C2n and H = C4n for n = 2, 3, 4, Lemmas 14, 15, 16 (respectively) show that
there are exactly two quadratic fields where the appropriate torsion extension occurs.

• If H = C4 × C4 (resp. H = C3 × C3n , n = 1, 2) the quadratic field must be K = Q(
√−1)

(resp. K = Q(
√−3)) by 7. This proves the cases

◦ G = C4, H = C4 × C4;
◦ G = C3, H = C3 × C3;
◦ G = C6, H = C3 × C6.

• For any given G = Cn , H = G × Cm with gcd(n,m) = 1 can appear at most twice, since
E[m] = Cm ×Cm . More precisely, ifm = 5, 7, 9 then only one quadratic field may extend
the torsion in this way since, if there were two such quadratic fields, the cyclotomic field
generated by the m-th roots of unity, Q(ζm), should be a subfield of the corresponding
biquadratic case from Proposition 7, and that is not possible. This proves the cases:

◦ G = C1, H = Cm , with m = 5, 7, 9;
◦ G = C2, H = C10;
◦ G = C3, H = C15.

Now ifm = 3 then H may appear once or twice. It actually happens twice in the following
cases (see examples in Table 1 at the appendix):

◦ G = C1, H = C3;
◦ G = C2, H = C6.

• There are only two cases remaining: G = Cn , H = C3n for n = 4, 5. Only one quadratic
field is possible in these instances. If there were two quadratic fields where H appears,
then Cn × C3 × C3 should be a subgroup of one of the groups in �Q(2∞) for n = 4, 5;
and that is impossible from Theorem 5.

4.2 The non-cyclic case

Let E be an elliptic curve defined over Q such that E(Q)tors = G where G is the following:

• G = C2 × C2. If H = C2 × C4 there might be 1, 2 or 3 quadratic extensions, following
Proposition 11 in the previous section.
If H = C2 ×C2n with n = 3, 6 appears in two different quadratic extensions, then there
are two independent points of order 3 in Q(2∞). As a result, C6 × C6 ≤ E(Q(2∞))tors,
which contradicts Theorem 8.
If H = C2×C8 for two different quadratic extensions, wemust have two different points
of order 8. Let us call L the composition field of these two quadratic extensions. There
are two groups in �Q(2∞) with more than one element of order 8: C4 ×C8 and C8 ×C8.
But the first one is not our case: looking at the lattice of subgroups of C4 × C8 one can
realize that both C2 × C8 have a common subgroup C2 × C4, while the intersection (in
our case) should only be G = C2 × C2. This implies E(L)tors had to be C8 × C8 and
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Proposition 9 tells us that under these circumstances [L : Q] ≥ 16. Hence only one
quadratic extension with H = C2 × C8 can occur.

• G = C2 × C4. As we mentioned above, if H = C4 × C4 the only possible extension is
Q(

√−1)/Q.
When H = C2 × C8 the first part of Lemma 14 can be applied verbatim and it shows
that 1 or 2 extensions can appear (both things occur).

• G = C2 × C6. The only group extension, by Theorem 1 is H = C2 × C12. Lemma 15
tells us (the first part) that either one or two relevant quadratic extensions may appear.
Also, from Theorem 8 we know that E(Q(2∞))tors = C4 × C12, and by Proposition 9
that E(L)tors = C4 × C12 implies [L : Q] ≥ 8.
But, if there were two quadratic extensions, K1, K2 with E(Ki )tors = C2 × C12, let
us write F the composite of K1 and K2 (in particular, [F : Q] = 4). Then clearly
E(F)tors = C4 × C12, because it must be contained in E(Q(2∞))tors and it should be
strictly bigger than both E(Ki )tors.
This is a contradiction and therefore, only one quadratic extension K can appear with
E(K )tors = H = C2 × C12.

Remark These two last cases can also be found in [14], but the proofs there are longer, as
we can take advantage of the many results which have appeared concerning this matter since
(specially those in [4,5]).

5 Proof of Theorem 3

Now we are going to prove Theorem 3. For this purpose, for a given G ∈ �(1) let us build
a set S(G) consisting of the groups H ∈ �Q(2,G)\{G}, repeated as many times as the
number of possible quadratic fields where H appears in Theorem 2. Our task is checking,
for any subset S ∈ S(G) if S belongs to HQ(2,G) or not.

Example As

�Q(2, C1) = {C1, C3, C5, C7, C9}
and Theorem 2 tells us that two quadratic extensions can appear with torsion group C3, we
have

S (C1) =
{
[C3] ; [C5] ; [C7] ; [C9] ; [C3, C3] ; [C3, C5] ; [C3, C7] ; [C3, C9] ;
[C5, C7] ; [C5, C9] ; [C7, C9] ; [C3, C3, C5] ; [C3, C3, C7] ; [C3, C3, C9] ;
[C3, C5, C7] ; [C3, C5, C9] ; [C3, C7, C9] ; [C5, C7, C9] ; [C3, C3, C5, C7] ;
[C3, C3, C5, C9] ; [C3, C3, C7, C9] ; [C3, C5, C7, C9] ; [C3, C3, C5, C7, C9]

}
.

Mind that at Table 1 we have (for all G ∈ �(1)) examples of elliptic curves over Q

satisfying the conditions in Theorem 3, for any S ∈ HQ(2,G). Therefore, now we have to
prove that there does not exist any other possible S ∈ S(G).

Remark Let beG ∈ �(1) cyclic and of even order. Then, for any S ∈ HQ(2,G) there always
exists a unique non-cyclic H ∈ S, the one corresponding to Q(E[2]) (a quadratic extension
in this case), where E is the elliptic curve associated to S.
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5.1 The groups C7,C9,C2 × C8

These are the easiest cases, since by Theorem 1 we have that these groups are stable under
all quadratic extensions. Therefore, in these cases,

HQ(2,G) = ∅.

5.2 The groups C5,C10,C12,C2 × C6

Using Theorem 2, these cases are almost as easy as the previous ones, since we have that
S(G) has only one element and we have examples in Table 1 for any of those cases, we obtain
that

HQ(2,G) = S(G).

5.3 The group C1

Consider the groups in �Q(2, C1). Mind that the intersection of two groups must be trivial in
this case, hence we must look for (two or more) elements in �Q(2, C1), other than C1, such
that their product lies in �Q(2∞). From that, we easily deduce that

HQ(2, C1) =
{
[C3]; [C5]; [C7]; [C9]; [C3, C3]; [C3, C5]

}
.

5.4 The group C3

From all cases in S(C3), the only case to discard is S = [C3 × C3, C15]. In that case, C3 × C15
should be a subgroup of some group in �Q(2∞). But this does not happen.

HQ(2, C3) =
{
[C3 × C3]; [C15]

}
.

5.5 The group C8

By the previous remark, Theorem 2 and Lemma 16 we have that the only possible subsets in
S(C8) are [C2 ×C8] and [C2 ×C8, C16, C16]. Mind that C16 appears twice or it does not appear
at all, from Lemma 16. Since we have examples in Table 1 for those cases, we have proved:

HQ(2, C8) =
{
[C2 × C8]; [C2 × C8, C16, C16]

}
.

5.6 The group C2 × C4

As previously, we have examples in Table 1 for any subset in S(C2 × C4), which proves:

HQ(2, C2 × C4) =
{
[C2 × C8]; [C4 × C4]; [C2 × C8, C2 × C8]; [C2 × C8, C4 × C4];
[C2 × C8, C2 × C8, C4 × C4]

}
.

5.7 The group C6

From the examples in Table 1 the only case to discard is S = [C2 × C6, C3 × C6, C12, C12]
(as above, Lemma 15 implies that C12 appears twice if it does). But if there exists an elliptic
curve E overQ such that over four quadratic fields has those torsion subgroups, then C3×C12
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is a subgroup of E(Q(2∞))tors. But no group of �Q(2∞) has such subgroups from Theorem
5. Therefore we have proved:

HQ(2, C6) =
{
[C2 × C6]; [C2 × C6, C3 × C6]; [C2 × C6, C12, C12]

}
.

5.8 The group C4

There must always be exactly one non-cyclic group, and Lemma 14 tells us that C8, if it
appears in a quadratic extension, then it appears in two quadratic extensions. So, a quick
comparison between S(C4) andHQ(2, C4) in Theorem 3 tells us that it suffices to prove two
assertions.

First, there does not exist S ∈ HQ(2, C4) such that one of the following facts happens:

• H1, H2 ∈ S such that C8 ≤ H1 and C12 ≤ H2;
• H1, H2 ∈ S such that H1 = H2 = C12.

Note that there does not exist H ∈ �Q(2∞) with elements of order 8 and 12. This proves
the first point. On the other hand, C12 cannot appear twice in an element in S, since that would
imply there should exist H ∈ �Q(2∞) with C3 × C12 ≤ H . But that is impossible too from
Theorem 5.

Second and last, we need to prove that if C4 × C4 ∈ S, then S = [C4 × C4]. That is, we
have to discard the following elements in S(C4):

[C4 × C4, C12] , [C4 × C4, C8, C8] .

Let us prove first [C4 × C4, C12] /∈ S(C4). Suppose that there exists an elliptic curve E over
Q and a squarefree integer D such that E(Q(

√
D))tors = C12 and E(Q(

√−1))tors = C4×C4.
Let us denote by L = Q(

√
D,

√−1). In our situation C6 ≤ ED(Q)tors from [7, Cor. 4] and
C2 × C6 ≤ ED(Q(

√−1))tors. Let t ∈ Q be the relevant parameter in the Tate model of ED

(the one we recalled in Sect. 3.1). That is, we can find a Q-isomorphism such that a model
for ED is:

Y 2 = (X − t)

(
X2 − 1

4
(3t2 + 2t − 1)X − t

4
(t2 + 2t + 1)

)
.

Now, since C2 × C2 < ED(Q(
√−1))tors, this means the discriminant of ED is a square in

Q(
√−1) (and not inQ), which implies (1+ t)(1+9t) = −r2 for some r ∈ Q. Parametrizing

this conic we obtain

t = − 81m2 + 1

9(9m2 + 1)

for some m ∈ Q. Taking this back to the equation above we have the points of order 2:
(A ± B

√−1, 0), (t, 0) where

A = −4(1 + 36m2 + 243m4)

27(1 + 9m2)3
and B = − 24(m + 9m3)

27(1 + 9m2)3
. (2)

Using

E(Q(
√
D))tors = C12, E(Q(

√−1))tors = C4 × C4,

we have E(L)tors = C4 × C12 from Theorem 5. Therefore

ED(L)tors = C4 × C12,
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since E and ED are isomorphic over Q(
√
D). Let us prove that this is impossible. Assume

that all the points of order 2 can be divided by two in L . In particular, there should exist
γ ∈ L such that A ± B

√−1 = γ 2. If

γ = a0 + a1
√−1 + a2

√
D + a3

√−D,

then it is a straightforward computation to check that a necessary condition is that γ =
a+b

√−1 or γ = a
√
D+b

√−D for some a, b ∈ Q. Assuming that γ is of one of the forms
above, the equality A ± B

√−1 = γ 2 holds if and only if A = (a2 − b2)r and B = 2abr ,
where r = 1 or r = D. Solving this equations on the variables a and b and using the definition
of A and B from (2) we obtain

a = ± 2m

1 + 9m2

√
2

3r

(
1 + 27m2 ±

√
(1 + 9m2)(1 + 81m2)

)− 1
2
.

Then a necessary condition for a ∈ Q is that (1 + 9m2)(1 + 81m2) = s2 for some s ∈ Q.
This equation defines an elliptic curve (48a1) over Q, whose Mordell group is C2 × C2. But
apart form the points at infinity, these points correspond to m = 0, and this value gives us a
Tate model which does not yield an elliptic curve (it corresponds to t = −1/9). This proves
[C4 × C4, C12] /∈ S(C4).

Finally then, let us prove [C4 × C4, C8, C8] /∈ S(C4). That is, we have to prove that, if an
elliptic curve E over Q has E(Q)tors = C4 then there does not exist a squarefree integer D
such that E(Q(

√
D))tors = C8 and E(Q(

√−1))tors = C4 × C4.
If C8 = E(K )tors for some quadratic field K then t = −s2 for some s ∈ Q from Lemma

14; where t is the relevant parameter in the Tate model of E . That is:

E : Y 2 = X3 + 1

4

(
1 + 4s2

)
X2 + s2

2
X + s4

4
.

As E(Q(
√−1))tors = C4 × C4 it must have full 2-torsion over Q(

√−1) and that means �E

is a square in Q(
√−1). This implies 1 − 16s2 is a square in Q(

√−1) (and not in Q), and
hence we can write

1 − 16s2 = −r2,

for some r ∈ Q. Parametrizing this conic we obtain

s = m2 + 4m + 5

4(m + 1)(m + 3)
, r = 2(2 + m)

(m + 1)(m + 3)
,

for somem ∈ Q. Taking this back to the equation of E we find that the full 2-torsion is given
by points (αi , 0), i = 1, 2, 3, where

α1 = − (m + 2 + √−1)2

8(m + 1)(m + 3)
, α2 = − (m + 2 − √−1)2

8(m + 1)(m + 3)
, α3 = − (5 + 4m + m2)2

16(m + 1)2(m + 3)2
.

As E(Q(
√−1))tors = C4 × C4, all these points can be halved in Q(

√−1), so, by Lemma 13,
αi − α j must be a square in Q(

√−1) for all i, j ∈ {1, 2, 3}. In particular

α1 − α2 = − (m + 2)

2(m + 1)(m + 3)

√−1.
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That is α1 − α2 = r
√−1 where r ∈ Q. So, if α1 − α2 = β2 for some β = a + b

√−1 ∈
Q(

√−1), it must be b = ±a, and β = a ± a
√−1. Then

− (m + 2)

2(m + 1)(m + 3)
= ±2a2,

otherwise said,

(m + 1)(m + 2)(m + 3) = ±z2,

for some z ∈ Q. These two equations define elliptic curves over Q and in fact both are
isomorphic to 32a2, whose Mordell group is C2 × C2. So, the only available solutions are
the trivial ones (z = 0) given by m = −1,−2,−3. But m = −1,−3 are not available in
the parametrization above (as they divide the numerator of s), while m = −2 gives us a Tate
model which does not yield an elliptic curve (it corresponds to t = −1/16).

Therefore we have proved:

HQ(2, C4) =
{
[C2 × C4]; [C2 × C8]; [C2 × C12], [C4 × C4];
[C2 × C4, C12]; [C2 × C4, C8, C8]; [C2 × C8, C8, C8]

}
.

5.9 The group C2 × C2

As before, a comparison between S(C2 × C2) and HQ(2, C2 × C2) (shown in Table 1 at the
appendix) tells us that the proof for this case amounts to proving that, for any S ∈ S(C2×C2):

1. If C2×C12 ∈ S, then S = [C2×C12]: Suppose that there exists another H ∈ �Q(2, C2×C2)
such that H ∈ S. Then there exists an elliptic curve defined over Q and two squarefree
integers D, D′ such that E(Q(

√
D))tors = C2 × C12 and E(Q(

√
D′))tors = H .

• Suppose that H = C2 × C4. Then there is a point of order 12 and a point of order 4
in different fields, and therefore they generate different rational points of order 4.
That implies we may have C4 × C12 over the biquadratic field Q(

√
D,

√
D′), but

Proposition 9 tells us that this group can only appear at degree 23 or larger.
• Suppose that H = C2 × C6. Then we would have C6 × C6 ≤ E(Q(2∞))tors. This

contradicts Theorem 8.
• Finally, assume that H = C2 × C8. Then C8 × C12 ≤ E(Q(2∞))tors. This again

contradicts Theorem 8.

2. [C2 × C6, C2 × C8] �⊂ S. Were this the case we would have C6 × C8 ≤ E(Q(2∞))tors
which is not possible (Theorem 8).

3. S �= [C2 × C6, C2 × C4, C2 × C4]. We will not give full details here, as they are similar
to those in the previous subsection. Let E be an elliptic curve defined over Q such that
E(Q)tors = C2 × C2 and there exist three squarefree integers D1, D2, D such that

E(Q(
√
Di ))tors = C2 × C4 for i = 1, 2,

E(Q(
√
D))tors = C2 × C6.

We are going to prove that this is impossible. In other words, C4 × C12 ≤ E(L)tors is not
possible for any triquadratic field L . This is equivalent to the same statement, but for the
elliptic curve ED , since E and ED are isomorphic over Q(

√
D). For this purpose, we are

going to use the general curve with torsion C2 × C6 by Kubert [13] in the form given by
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Elkies [3]:

E ′ : Y 2 = (
X + t2

) (
X + (t + 1)2

) (
X + (t2 + t)2

)

with 3-torsion points at X = 0. Now mind that, if the curve Y 2 = X (X2 + aX + b) has
a 4-torsion point T such that 2T = (0, 0), then the first coordinate of T is a square root
of b. For E ′, there are three choices of b, all equivalent. This is because, projectively, E ′
can be written as

Y 2 = (
X + (tu)2

) (
X + (tv)2

) (
X + (uv)2

)

with t + u + v = 0. In our case the three possible b’s are:

t3(2 + t)(1 + 2t),−(−1 + t)(1 + t)3(1 + 2t), (−1 + t)t3(1 + t)3(2 + t).

Once ED has full 4-torsion over some number field L then L must contain
√−1 from

Proposition 7; so there are really only two other square roots that one needs to specify
to determine the triquadratic field. If two of the b’s yield points defined over the same
quadratic field then either one of these b’s is a square or two of them multiply to a square.
But this is already enough because each possibility yields an elliptic curve of rank zero
(24a1 and 48a1) and the torsion points on both curves correspond to singular curves in
the equation E ′.

4. If [C2 × C4, C2 × C4, C2 × C4] ⊂ S, then S = [C2 × C4, C2 × C4, C2 × C4]. A group
C2 × C6 cannot appear in S from the argument above. And C2 × C8 cannot appear either
because there would be a point of order 8 in a quadratic extension, coming from halving
a point of order 4, but we have already obtained all possible quadratic extension where
the torsion grows (3, in fact, from Proposition 11). All the remaining cases do happen, as
shown in Table 1. Therefore we have proved:

HQ(2, C2 × C2) =
{
[C2 × C4] ; [C2 × C6] ; [C2 × C8] ; [C2 × C12] ;
[C2 × C4, C2 × C4] ; [C2 × C4, C2 × C6] ; [C2 × C4, C2 × C8] ;
[C2 × C4, C2 × C4, C2 × C4] ; [C2 × C4, C2 × C4, C2 × C8]

}
.

5.10 The group C2

Some quick remarks on HQ(2, C2) beforehand:
First, no element ofHQ(2, C2) can contain both C10 (or C2×C10) and Cm with somem ≥ 4.

The reason for this is that no element in �Q(2∞) has points of order 10 and points of order
m. This, together with the remark at the beginning of the section, shows that:

• C2 × C10 can only appear in an element of HQ(2, C2) as [C2 × C10].
• C10 can only appear as [C10, C2 × C2].

Second, there are some pairs which cannot appear together in an element of HQ(2, C2):

• C6 (or C2 × C6) and C8, as there is no H ∈ �Q(2∞) with points of order 6 and points
of order 8.

• C8 and C16. Assume C8 = 〈P〉 and C16 = 〈Q〉 are the torsion subgroups in two different
quadratic extensions. Consider the group homomorphism

ϕ : C8 × C16 −→ E(Q(2∞))

(nP,mQ) �−→ nP + mQ
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which verifies ker(ϕ) = 〈(4P, 8Q)〉, as the rational point of order 2 is the only one
who has its inverse in both quadratic extensions. So E(Q(2∞))tors contains a group of
64 elements with (at least) an element of order 8 and no elements of order 16. From
Theorem 5 this would imply there exists an elliptic curve E defined over Q such that
E(Q)tors = C2 and C8 × C8 ≤ E(Q(2∞))tors and this contradicts Proposition 6.

Another important remark here is the following: let E be an elliptic curve defined over Q

such that there is a quadratic extension K/Q with Cn = E(K )tors, and 4|n, then there must
be another quadratic extension K ′/Q with Cm = E(K ′)tors with 4|m. Moreover, there are
no more extensions where the torsion grows, apart from the splitting field of X3 + AX + B
which gives a non-cyclic torsion group. This can be deduced from Lemma 13 as there are
either 2 or no quadratic extension where one can get points of order 4 and, therefore, groups
Cn and Cm with n,m ∈ 4Z. The following pairs may then appear:

{C4, C4}, {C4, C8}, {C4, C12}, {C4, C16}, {C8, C8}, {C8, C12}, {C8, C16}, {C12, C16},
although the last three ones can already be ruled out from the arguments above.

Let us then construct the elements S ∈ HQ(2, C2) in ascending order of #S:

• #S = 1: In this case S ∈ {[C2 ×C2], [C2 ×C6], [C2 ×C10]}. All of these cases can occur
(see examples in Table 1).

• #S = 2: In Table 1 we can find examples of:

[C2 × C2, C6], [C2 × C2, C10], [C2 × C6, C6].
These are all the possibilities, from Theorem 1 and the previous remarks.

• #S = 3 with C2 × C2 ∈ S. We have example for all the possible cases (after taking into
account the preliminary remarks), which are:

[C2 × C2, C4, C4], [C2 × C2, C4, C8], [C2 × C2, C4, C12],
[C2 × C2, C4, C16], [C2 × C2, C8, C8], [C2 × C2, C6, C6].

• #S = 3 with C2 × C6 ∈ S. We have examples for [C2 × C6, C4, C4] and the rest can be
ruled out. Precisely:

[C2 × C6, C4, C8], [C2 × C6, C4, C16], [C2 × C6, C8, C8]
cannot appear because there is no H ∈ �Q(2∞) with points of order 6 and points of
order 8. Also

[C2 × C6, C4, C12]
is not an option, as that would imply C3 × C12 is a subgrup of some H ∈ �Q(2∞).
Finally,

[C2 × C6, C6, C6]
is not an option. Were this the case, we would have three C3 subgroups (different
pairwise, as they appear in different quadratic extensions) of some H ∈ �Q(2∞),
which is not possible.

• #S = 4 with C2 × C2 ∈ S. We have examples (see Table 1 as usual) for

S = [C2 × C2, C4, C4, C6],
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and the remaining possibilities do not happen, in a similar way as the previous case. In
fact,

[C2 × C2, C4, C8, C6], [C2 × C2, C4, C16, C6], [C2 × C2, C8, C8, C6]
all have points of order 6 and points of order 8, while

[C2 × C2, C4, C12, C6],
would imply C3 × C12 ≤ H for some group H ∈ �Q(2∞).

• #S = 4 with C2 × C6 ∈ S. The only case would be S = [C2 × C6, C4, C4, C6] and in fact
it does not occur, as it would imply C3 × C12 is a subgroup for a certain H ∈ �Q(2∞).

• #S = 5. The only possible case would be S = [C2 × C2, C4, C4, C6, C6], which would
imply, again, C3 × C12 ≤ H , for some H ∈ �Q(2∞).

Therefore we have proved:

HQ (2, C2 × C2) =
{
[C2 × C2] ; [C2 × C6] ; [C2 × C10] ; [C2 × C2, C6] ; [C2 × C2, C10] ;
[C2 × C6, C6] ; [C2 × C2, C4, C4] ; [C2 × C2, C6, C6] ;
[C2 × C2, C8, C8] ; [C2 × C2, C4, C8] ; [C2 × C2, C4, C12] ;
[C2 × C2, C4, C16] ; [C2 × C6, C4, C4] ; [C2 × C2, C4, C4, C6]

}
.

This finishes the proof of Theorem 3.
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improved its overall quality, and both authors are enormously grateful for that.

Appendix: Computations

Let G ∈ �(1), S = [H1, . . . , Hm] ∈ HQ(2,G), E an elliptic curve defined over Q such that
E(Q)tors = G and let D1, . . . , Dm ∈ Z, squarefree, such that

E(Q(
√
Di ))tors = Hi for i = 1, . . . ,m.

Let us write

FS = Q

(√
D1, . . . ,

√
Dm

)
.

Table 1 shows an example of every possible situation, where at

• the first column is S,
• the second column is S ∈ HQ(2,G),
• the third column is #S,
• the fourth column is E(FS)tors,
• the fifth column is the degree of FS over Q,
• the sixth column is the label of the elliptic curve E with minimal conductor satisfying

the conditions above,
• the seventh column displays the D′s corresponding to the respective H ′s in S.
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Table 1 h = #S for S ∈ HQ(2,G), d = [FS : Q]
G HQ(2,G) h E(FS)tors d label D′s

C1 C3 1 C3 2 19a2 −3

C5 1 C5 2 75a2 5

C7 1 C7 2 208d1 −1

C9 1 C9 2 54a2 −3

C3,C3 2 C3 × C3 4 175b2 5, −15

C3,C5 2 C15 4 50a4 −3, 5

C2 C2 × C2 1 C2 × C2 2 46a1 −23

C2 × C6 1 C2 × C6 2 36a3 −3

C2 × C10 1 C2 × C10 2 450a3 −15

C2 × C2,C6 2 C2 × C6 4 14a3 −7,−3

C2 × C2,C10 2 C2 × C10 4 150b3 −15, 5

C2 × C6,C6 2 C6 × C6 4 98a3 −7, 21

C2 × C2,C4,C4 3 C2 × C4 4 15a5 5, −1,−5

C2 × C2,C4,C4 3 C4 × C4 4 64a4 −1, 2, −2

C2 × C2,C8,C8 3 C4 × C8 4 2880r6 −1, 6, −6

C2 × C2,C4,C8 3 C2 × C8 4 24a6 −2, 2, −1

C2 × C2,C4,C12 3 C2 × C12 4 30a3 −15, 5, −3

C2 × C2,C4,C16 3 C2 × C16 4 3150bk1 −7, 105, −15

C2 × C6,C4,C4 3 C2 × C12 4 450g1 −15,−3, 5

C2 × C2,C6,C6 3 C6 × C6 8 98a4 2, −7, 21

C2 × C2,C4,C4,C6 4 C2 × C12 8 30a7 10, −5,−2, −3

C3 C15 1 C15 2 50a3 5

C3 × C3 1 C3 × C3 2 19a1 −3

C4 C2 × C4 1 C2 × C4 2 17a1 −1

C2 × C8 1 C2 × C8 2 192c6 −2

C2 × C12 1 C2 × C12 2 150c3 −15

C4 × C4 1 C4 × C4 2 40a4 −1

C2 × C4,C12 2 C2 × C12 4 90c1 −15,−3

C2 × C4,C8,C8 2 C2 × C8 4 15a7 15, 3, 5

C2 × C8,C8,C8 2 C4 × C8 4 240d6 −1, 6, −6

C5 C15 1 C15 2 50b1 5

C6 C2 × C6 1 C2 × C6 2 14a4 −7

C2 × C6,C3 × C6 2 C6 × C6 4 14a1 −7,−3

C2 × C6,C12,C12 3 C2 × C12 4 30a1 −15,−3, 5

Remark With the previous notation, we have computed for any curve in the Antwerp–
Cremona tables [2]: G, S and E(FS)tors. Interestingly, for a given S, the group E(FS)tors
seem to be fully determined, except for the cases

G = C2; S = [C2 × C2, C4, C4] ;
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Table 1 continued

G HQ(2,G) h E(FS)tors d label D′s

C8 C2 × C8 1 C2 × C8 2 15a4 −1

C2 × C8,C16,C16 3 C2 × C16 4 210e1 −7, 105,−15

C10 C2 × C10 1 C2 × C10 2 66c1 33

C12 C2 × C12 1 C2 × C12 2 90c3 −15

C2 × C2 C2 × C4 1 C2 × C4 2 33a1 −11

C2 × C6 1 C2 × C6 2 30a6 −3

C2 × C8 1 C2 × C8 2 63a2 −3

C2 × C12 1 C2 × C12 2 960o6 6

C2 × C4,C2 × C4 2 C4 × C4 4 17a2 17,−1

C2 × C4,C2 × C4 2 C4 × C8 4 1200j4 −5, 5

C2 × C4,C2 × C6 2 C2 × C12 4 90c2 6,−3

C2 × C4,C2 × C8 2 C4 × C8 4 75b3 −5, 5

C2 × C4,C2 × C4,C2 × C4 3 C4 × C4 4 15a2 −5, 5,−1

C2 × C4,C2 × C4,C2 × C8 3 C4 × C8 4 510e5 −34, 34, −1

C2 × C4 C2 × C8 1 C2 × C8 2 15a3 5

C4 × C4 1 C4 × C4 2 195a3 −1

C2 × C8,C4 × C4 2 C4 × C8 4 15a1 5,−1

C2 × C8,C2 × C8 2 C4 × C8 4 1230f2 41,−1

C2 × C8,C2 × C8,C4 × C4 3 C4 × C8 4 210e3 −6, 6,−1

C2 × C6 C2 × C12 1 C2 × C12 2 90c6 6

G = C2 × C2; S = [C2 × C4, C2 × C4]

where two different E(FS) appear as we run through the entire set of curves in [2]. Given
the amount of computations we have carried out, we think it is safe to conjecture that this is
precisely the case.

Remark Comparing the results in Table 1 with the set �Q (2∞) we can conclude that the
only groups in �Q(2∞) which do not appear if we consider the groups E(FS)tors are:

C4 × C12, C4 × C16, C8 × C8.

These are, precisely, the groups discussed at Proposition 9. Our computations suggest that
this is in fact the case, but we have not proved this in detail.
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