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Covering Techniques and Rational Points
on Some Genus 5 Curves

Enrique González-Jiménez

Abstract. We describe a method that allows, under some hypotheses, com-
putation of all the rational points of some genus 5 curves defined over a number
field. This method is used to solve some arithmetic problems that remained
open.

1. Introduction

Several arithmetic problems are parametrized by the rational points of a curve
over a number field K. In the cases where there are only squares involved, some-
times these curves may be written as the intersection of diagonal quadrics (only
squares of the variables appear) in some projective space. The easiest case we
are interested in is C : aX2

0 + bX2
1 = X2

2 , that represents a conic in P3. This
case is well-understood and there are good algorithms that describe when there
is a solution and, in that case, find them all. A next case is C : {aX2

0 + bX2
1 =

X2
2 , cX

2
0 + dX2

1 = X2
3}, which represents a genus 1 curve (if ad − bc �= 0) in P4.

Although, nowadays there is not a deterministic algorithm to determine if C(K) is
empty and/or to compute C(K), it has been deeply studied. Finally, we have the
case C : {aX2

0 + bX2
1 = X2

2 , cX
2
0 + dX2

1 = X2
3 , eX

2
0 + fX2

1 = X2
4}. This curve is

generically of genus 5 and there are not known algorithms to compute C(K). In
this paper, our purpose is to give an algorithm to compute (under some hypotheses)
C(K). In fact, in section 2, we describe a more general algorithm to compute the
rational points of some genus 5 curve where the above curves are a particular case.
This algorithm is based on some previous works with Xavier Xarles (for a single
curve [GJX11] or for family of curves [GJX13b,GJ13]).

In section 3 we apply the algorithm described in section 2 to some arithmetic
problems that have remained open in the literature. At the end of the paper we
include an appendix dedicated to quartic elliptic curves. There we show some
results that will be useful for the use of the algorithm of section 2.

2010 Mathematics Subject Classification. Primary: 11G30; Secondary: 14H25,11B25, 11D25,
11D09.

Key words and phrases. rational points, genus 5 curve, covering collections, elliptic curve
Chabauty, arithmetic progressions, Edwards curves, Weierstrass equation, Q-derived polynomials,
Pell equations.

The author was supported in part by grant MTM2012–35849.

c©2015 American Mathematical Society

89

Licensed to Chinese University of Hong Kong.  Prepared on Wed Nov 25 06:48:33 EST 2015for download from IP 137.189.171.235/137.189.170.231.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

http://www.ams.org/conm/
http://dx.doi.org/10.1090/conm/649/13021


90 ENRIQUE GONZÁLEZ-JIMÉNEZ

2. An algorithm

Let p1, p2 be two coprime monic quartic separable polynomials with coefficients
in a number field K. Consider the genus 5 curve C defined in A3 by

(2.1) C : { y21 = p1(t) , y
2
2 = p2(t) }.

In this section we show an algorithm that allows (under some hypotheses) compu-
tation of C(K). This method is based on the covering collections technique (cf.
[CG89,Wet97]) and the elliptic curve Chabauty method (cf. [FW01,Bru03]).

Thanks to the shape of the curve C, it has two degree 2 maps defined over K
to the genus 1 curves given by the equations Fi : y2i = pi(t), for i = 1, 2.

Now, consider a factorization of each polynomial pi(t) as product of two degree
two polynomials pi+(t) and pi−(t) defined over an algebraic extension L of K.
Each factorization pi(t) = pi+(t)pi−(t) determines an unramified degree 2 covering
χi : F

′
i → Fi given by the curve

F ′
i : {y2i+= pi+(t) , y

2
i−= pi−(t) },

and χi(t, yi+, yi−) = (t, yi+yi−), for i = 1, 2. Thus, each covering corresponds to a
degree 2 isogeny φi : E

′
i → Ei, where Ei = Jac(Fi) and E′

i = Jac(F ′
i ).

Moreover, these factorizations together determine a Galois cover of C with
Galois group (Z/2Z)2 that can be described as the curve in A5 given by

D : {y21+= p1+(t) , y
2
1−= p1−(t) , y

2
2+= p2+(t) , y

2
2−= p2−(t) },

which is a curve of genus 17, along with the map χ : D → C defined as

χ(t, y1+, y1−, y2+, y2−) = (t, y1+y1−, y2+y2−).

Now, for any pair (δ1, δ2) ∈ K2 we define the twist χ(δ1,δ2) : D(δ1,δ2) → C of the
covering χ : D → C by:

D(δ1,δ2) : {δ1y21+= p1+(t) , δ1y
2
1−= p1−(t) , δ2y

2
2+= p2+(t) , δ2y

2
2−= p2−(t) },

and

χ(δ1,δ2)(t, y1+, y1−, y2+, y2−) = (t, δ1y1+y1−, δ2y2+y2−).

Then, by a classical theorem of Chevalley and Weil [CW32] we have

C(K) ⊆
⋃

δ∈K2

χδ({P ∈ Dδ(L) : χδ(P ) ∈ C(K)}).

Notice that only a finite number of twists have points locally everywhere, and
these twists can be explicitly described. This finite set, that we denote by S ⊂
(K∗)2, may be described, thanks to Proposition A.1, in terms of a set SL(φi) of
representatives in L of the image of the Selmer groups of the degree 2 isogenies
φi : E

′
i → Ei in L∗/(L∗)2 via the natural map, for i = 1, 2. That is, S = SL(φ1)×

SL(φ2).
Once we have determined the finite set S, the next challenge is to compute all

the points P ∈ Dδ(L) such that χδ(P ) ∈ C(K) for any δ ∈ S. For this purpose,
we are going to use the elliptic curve Chabauty method. For s = (s1, s2) ∈ {±,±}
consider the quotient πs : D → Hs where

Hs : z2 = p1s1(t)p2s2(t) and πs(t, y1+, y1−, y2+, y2−) = (t, y1s1y2s2).

Then for any δ = (δ1, δ2) ∈ S we define πδ
s : D → Hδ

s where

Hδ
s : δ1δ2z

2 = p1s1(t)p2s2(t) and πδ
s(t, y1+, y1−, y2+, y2−) = (x, y1s1y2s2).
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COVERING TECHNIQUES AND RATIONAL POINTS ON GENUS 5 CURVES 91

which, in fact, only depends on the product δ1δ2. Therefore, we can replace S by:

S = {δ1δ2 : δ1 ∈ SL(φ1), δ2 ∈ SL(φ2)}.
The following commutative diagram illustrates all the curves and morphisms

involved in our problem:

D(δ1,δ2)

��

��

��

��
C

��

��

��

H
(δ1δ2)
s

��

F
′(δ1)
1

��
��

		

F
′(δ2)
2

��
��





F ′
1

��

�� F1

��

F2

��

F ′
2

��

��
E′

1
�� E1 E2 E′

2
��

P1

Notice that, in the diagram above, all the morphisms to P1 are given by the parame-
ter t.

We have obtained for a fixed δ ∈ S and for any s ∈ {(±,±)}:
{t ∈ Q| ∃Y ∈ L4 with (t, Y ) ∈ D(δ)(L)} ⊆ {t ∈ Q| ∃z ∈ L with (t, z) ∈ Hδ

s (L)}.
Then the algorithm works out if we are able to compute for any δ ∈ S, all the

points (t, z) ∈ Hδ
s (L) with t ∈ P1(Q) for some choice of the signs s ∈ {(±,±)}.

This computation can be done in two steps as follows:

(1st) We must determine if Hδ
s (L) is empty. Bruin and Stoll [BS09] developed a

(non-deterministic) method to determine if this happens.

(2nd) In the case that Hδ
s (L) is non-empty, we use the elliptic curve Chabauty

technique (cf. [Bru03]). To do that we must compute if the rank of the Mordell-
Weil group of Hδ

s (L) is less than the degree of L over Q. We also need to determine
a subgroup of finite index of this group to carry out the elliptic curve Chabauty
method.

In practice, we consider only the case K = Q and L a quadratic number field,
because the computation of the Mordell-Weil group of an elliptic curve over a num-
ber field of higher degree is too expensive computationally. We have implemented
the algorithm in Magma [BCFS12].

2.1. Diagonal genus 5 curves. Let K be a number field and a, b, c, d, e, f ∈
K. Denote by C the intersection of the following three quadrics in P4:

(2.2) C :

⎧⎨⎩ aX2
0 + bX2

1 = X2
2

cX2
0 + dX2

1 = X2
3

eX2
0 + fX2

1 = X2
4

⎫⎬⎭ .

Suppose that the three quadratic forms (in the variables X0 and X1) defining each
quadric are non-singular and non-proportional. Then C is a (non-singular) genus
5 curve (cf. [Bre97]). Note that any non-hyperelliptic genus 5 curve may be given
(after the canonical map in P4 and Petri’s Theorem) as the intersection of three
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92 ENRIQUE GONZÁLEZ-JIMÉNEZ

quadrics. That is the reason why this kind of genus 5 curve will be called diagonal
by us. Moreover, the jacobian of C is K-isogenous to the product of the following
five elliptic curves (cf. [Bre97]) :

E4 : y2 = x(x+ ad)(x+ cb),
E3 : y2 = x(x+ af)(x+ eb),
E2 : y2 = x(x+ cf)(x+ ed),
E1 : y2 = x(x− d(af − eb))(x− f(ad− cb)),
E0 : y2 = x(x+ c(af − eb))(x+ e(ad− cb)).

Note that Ei is the jacobian of the genus 1 curve obtained by removing the variable
Xi from the equation of C. Moreover, the isogeny between Jac(C) and E0×· · ·×E4

comes from the forgetful maps πi : C → Ei.
We associate to model (2.2) of the curve C the following two matrices:

MC =

⎛⎝1 0 0 −a −b
0 1 0 −c −d
0 0 1 −e −f

⎞⎠ and RC =

⎛⎝a b
c d
e f

⎞⎠ .

We call MC (resp. RC) the matrix (rep. reduced matrix) of the model (2.2).
Notice that if we permute the columns of MC then the echelon form of this new
matrix give us a new matrix and a new reduced matrix of a new model of C (as
the intersection of three quadrics in P4). That is, there are ten ways to write the
diagonal genus 5 curve as the intersection of three diagonal quadrics in P4.

Let us give a new model of the diagonal genus 5 curve similar to the one
given by (2.1). Suppose that [x0 : x1 : x2 : x3 : x4] ∈ C(K). Then the techniques
developed in section A.3 allow us to determine two coprime monic quartic separable
polynomials with coefficients in K associated to the matrices:

R3 =

(
a b
c d

)
and R4 =

(
a b
e f

)
.

That is, p3 = pR3
and p4 = pR4

(see equation (A.2) in section A.3). These polyno-
mials define the following new model of the diagonal genus 5 curve C:

C : { y23 = p3(t) , y
2
4 = p4(t) }.

The change of model is obtained by parametrizing the conic aX2
0 + bX2

1 = X2
2 by

the point [x0 : x1 : x2 : x3 : x4] and it is given by:

[X0 : X1 : X2 : X3 : X4] �−→ (t, y3, y4) =

(
b(x1X2 −X1x2)x

2
3

x0X2 −X0x2
, x3X3, x4X4

)
.

Moreover, for i = 3, 4, Ei is the jacobian of the quartic genus 1 curve defined by
y2i = pi(t).

Now, to apply the algorithm described in section 2 we need factorizations of the
quartic polynomials p3 and p4. These have been given at section A.3. In particular,
for i ∈ {3, 4}, we have three factorizations pi(t) = pi,ji,+(t)pi,ji,−(t), ji ∈ {1, 2, 3},
over the field K(αi,ji) where:

α3,1 =
√
−cd , α3,2 =

√
−c(ad− bc) , α3,3 =

√
d(ad− bc) ,

α4,1 =
√
−ef , α4,2 =

√
−e(af − be) , α4,3 =

√
f(af − be) .

Each factorization (i, ji) corresponds to the following 2-torsion point on Ei(K):

P3,1 = (0, 0), P3,2 = (−b c, 0), P3,3 = (−a d, 0) ,
P4,1 = (0, 0), P4,2 = (−b e, 0), P4,3 = (−a f, 0) .

Licensed to Chinese University of Hong Kong.  Prepared on Wed Nov 25 06:48:33 EST 2015for download from IP 137.189.171.235/137.189.170.231.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



COVERING TECHNIQUES AND RATIONAL POINTS ON GENUS 5 CURVES 93

And each two torsion gives a 2-isogeny φi,ji : Ei → E′
i.

Moreover, thanks to the shape of the diagonal genus 5 curves, we have that
the number of twists to be checked may be smaller than expected (see [GJX13b,
Lemma 16]). Let Υ be the group of automorphisms of the curve C generated by
the automorphisms τi(Xi) = −Xi and τi(Xj) = Xj if i �= j, for i = 0, 1, 2, 3, 4.

Fix j3, j4 ∈ {1, 2, 3}. Consider L = K(α3,j3 , α4,j4) and denote by S̃L(φ3,j3) a set
of representatives of Sel(φ3,j3) modulo the subgroup generated by the image of the
trivial points [±x0 : ±x1 : ±x2 : ±x3 : ±x4] in this Selmer group. Consider the

subset S̃ ⊂ K∗ defined by

S̃ = {δ3δ4 : δ3 ∈ S̃L(φ3,j3), δ4 ∈ SL(φ4,j4)}.
The method allows us to compute C(K) if we are able to calculate, for some

choice of j3, j4 ∈ {1, 2, 3}, and for any δ ∈ S̃, all the points (t, w) ∈ Hδ
s (K(α1,j1 , α2,j2))

with t ∈ P1(K) for some choice of the signs s ∈ {(±,±)}.
Hence we have 60 possible choices of RC , j3 and j4, and we need to find one

of them where we can carry out these computations for all the elements δ ∈ S̃.

3. Examples

In this section we are going to characterize the solutions of some arithmetic
problems in terms of the rational points of some genus 5 curves. Then we will
solve these problems by computing all the rational points of such curves using the
algorithm described in section 2.

3.1. Arithmetic progressions on Pell equations. Let Yn = a+ (n− 1)q,
n = 1, . . . , 5 with a, q ∈ Q be the Y -coordinates of the solutions (Xn, Yn) , n =
1, . . . , 5, to the Pell equation X2 − dY 2 = m. Then we say that (Xn, Yn) (or
just Yn), n = 1, . . . , 5, are in arithmetic progression on the curve X2 − dY 2 = m.
Following Pethö and Ziegler [PZ08], one can obtain the system of 5 equations:

X2
1 − da2 = m, X2

2 − d(a+ q)2 = m, X2
3 − d(a+ 2q)2 = m,

X2
4 − d(a+ 3q)2 = m, X2

5 − d(a+ 4q)2 = m.

Eliminating m we obtain an equivalent system of 4 equations:

X2
2 −X2

1 = dq(2a+ q), X2
3 −X2

2 = dq(2a+ 3q),

X2
4 −X2

3 = dq(2a+ 5q), X2
5 −X2

4 = dq(2a+ 7q),

and eliminating d:

Ca,q :

⎧⎪⎪⎨⎪⎪⎩
X2

2 (4a+ 4q) = X2
1 (2a+ 3q) +X2

3 (2a+ q)

X2
3 (4a+ 8q) = X2

2 (2a+ 5q) +X2
4 (2a+ 3q)

X2
4 (4a+ 12q) = X2

3 (2a+ 7q) +X2
5 (2a+ 5q)

⎫⎪⎪⎬⎪⎪⎭ .

Therefore the matrix corresponding to the variables X2
1 , . . . , X

2
5 is

M̂Ca,q
=

⎛⎝2a+ 3q −4(a+ q) 2a+ q 0 0
0 2a+ 5q −4(a+ 2q) 2a+ 3q 0
0 0 2a+ 7q −4(a+ 3q) 2a+ 5q

⎞⎠ .

Notice that the points [±1 : ±1 : ±1 : ±1 : ±1] ∈ C(Q) correspond to (d,m) =
(0, 1).

Pethö and Ziegler [PZ08, §8. Open questions] asked the following:
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94 ENRIQUE GONZÁLEZ-JIMÉNEZ

Question: “Can one prove or disprove that there are d and m with d > 0 and
not a perfect square such that Y = 1, 3, 5, 7, 9 are in arithmetic progression on the
curve X2 − dY 2 = m?”

In this section our target is to answer the question above. Then, if we are
looking for d and m such that Y = 1, 3, 5, 7, 9 is an arithmetic progression on the
curve X2−dY 2 = m then we have a = 1 and q = 2. In particular, it may be proved
that C := C1,2 is a diagonal genus 5 curve just computing the matrix associated to

a model of the form (2.2) coming from the matrix M̂C . That is:

M̂C =

⎛⎝8 −12 4 0 0
0 12 −20 8 0
0 0 16 −28 12

⎞⎠ (3 5)
−→

Echelon

MC −→ RC =

⎛⎝ −1 2
−2/3 5/3
7/3 −4/3

⎞⎠ .

Now we apply the algorithm described in section 2.1. First, we need to choose
a pair j3, j4 ∈ {1, 2, 3} such that the field L = Q(α3,j3 , α4,j4) is a quadratic field

or Q. The only possible case is (j3, j4) = (1, 2) where L = Q(
√
10). Next , we

obtain S̃ = {±1,±2,±3,±6}. Now for any δ ∈ S̃, we must compute all the points

(t, w) ∈ Hδ
s (Q(

√
10)) with t ∈ P1(Q) for some s ∈ {(±,±)}. We have obtained that

for any δ ∈ S̃ there exists s ∈ {(+,±)} such that rankZ H
δ
s (Q(

√
10)) = 1 therefore

we can apply the elliptic curve Chabauty method to obtain the possible values of t.
The following table shows all the data that we have computed. The absolute value
of the coordinates of the point P ∈ C(Q) for the corresponding t appears at the
last column:

δ signs Hδ
signs(L) = ∅? rankZ H

δ
signs(L) t P

−1 (+,−) no 1 2 [1 : 1 : 1 : 1 : 1]
1 (+,−) no 1 ∞ [1 : 1 : 1 : 1 : 1]
2 (+,−) no 1 −1 [1 : 3 : 5 : 7 : 9]
−2 (+,−) no 1 4/3 [1 : 3 : 5 : 7 : 9]
3 (+,+) no 1 −2 [1 : 3 : 5 : 7 : 9]
−3 (+,+) no 1 3/2 [1 : 3 : 5 : 7 : 9]
6 (+,+) no 1 0 [1 : 1 : 1 : 1 : 1]
−6 (+,+) no 1 1 [1 : 1 : 1 : 1 : 1]

Looking at the previous table, we obtain

C(Q) = {[±1 : ±1 : ±1 : ±1 : ±1], [±1 : ±3 : ±5 : ±7 : ±9]}.

The unique non-trivial solution is [±1 : ±3 : ±5 : ±7 : ±9] that corresponds to
d = 1 and m = 0. Therefore we obtain:

Answer: If m and d are integers with d not a perfect square, then Y = 1, 3, 5, 7, 9
cannot be in arithmetic progression on the curve X2 − dY 2 = m.

3.2. Arithmetic progressions on Edwards curves. An Edwards curve is
an elliptic curve given in the form Ed : x2 + y2 = 1 + dx2y2, for some d ∈ Q,
d �= 0, 1. Let yn ∈ Q such that (n, yn) ∈ Ed(Q) for n = 0,±1,±2,±3,±4. Then we
say that (n, yn) (or just n), n = 0,±1, . . . ,±4, are in arithmetic progression on Ed.
For any d we have that (±1, 0), (0,±1) ∈ Ed(Q) therefore y0 = 0, y±1 = ±1. We
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COVERING TECHNIQUES AND RATIONAL POINTS ON GENUS 5 CURVES 95

can assume n > 1 since if (x, y) ∈ Ed(Q) then (±x,±y), (±y,±x) ∈ Ed(Q). Now,
denote by

dn =
n2 + y2n − 1

n2y2n
=

z2n(n
2 − 1) + 1

n2
with zn =

±1

yn
.

The existence of d ∈ Q, d �= 0, 1 such that there exist yn ∈ Q with (n, yn) ∈ Ed(Q)
for n = 0,±1,±2,±3,±4 is characterized by d2 = d3 and d2 = d4. That is, by the
diagonal genus 1 curve defined by:

E :

{
5 + 27z22 − 32z23 = 0
1 + 4z22 − 5z24 = 0

}
.

This elliptic curve has Cremona reference 33600es2 and has rank 2. Then Moody
[Moo11] proved that there are infinitely many Edwards curves with 9 points in
arithmetic progression. Then Moody said:

Moody: We performed a computer search to find a rational point on the curve
E, leading to an Ed with points having x-coordinates ±5. Our search has not found
such a rational point, thus it is an open problem to find an Edwards curve with an
arithmetic progression of length 10 or longer.

Our first objective in [GJ13] was to prove that there does not exist a rational
d such that 0,±1, . . . ,±5 form an arithmetic progression in Ed(Q). This objective
was completed1. Here we show the details. Note, that in the paper [GJ13] we
studied the general case of arithmetic progressions of the form a, a+ q, . . . for any
a, q ∈ Q on Edwards curves.

Now we impose (±5, y±5) ∈ Ed(Q), for some y±5 ∈ Q. This implies adding the
equality d2 = d5 to the system of equations: {d2 = d3 , d2 = d4}. Therefore we
obtain the genus 5 curve:

(3.1) C :

⎧⎨⎩ 5 + 27z22 − 32z23 = 0
1 + 4z22 − 5z24 = 0
7 + 25z22 − 32z25 = 0

⎫⎬⎭ .

If we homogenize the equations (3.1) then the matrix corresponding to the squares of

the variables is M̂C and we can prove that C is a diagonal genus 5 curve computing
its associated reduce matrix RC :

M̂C =

⎛⎝1 4 0 −5 0
7 25 0 0 −32
2 0 25 0 −27

⎞⎠ (1 4)(2 5)
−→

Echelon

MC −→ RC =

⎛⎝ 1/5 4/5
7/32 25/32
5/32 27/32

⎞⎠ .

1Recently, Bremner [Bre13] has obtained the same result but with a different proof.
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96 ENRIQUE GONZÁLEZ-JIMÉNEZ

Let (j3, j4) = (2, 1). Then L = Q(α3,j3 , α4,j4) = Q(
√
−15) and S̃ = {±1,±2,±3,±6}.

Then the following table shows all the data necessary to compute C(Q):

δ signs Hδ
signs(L) = ∅? rankZ H

δ
signs(L) t P

−1 (+,+) no 1 4/5 [1 : 1 : 1 : 1 : 1]
1 (+,+) no 1 ∞ [1 : 1 : 1 : 1 : 1]
2 (+,+) no 1 ∞ [1 : 1 : 1 : 1 : 1]
−2 (+,+) no 1 ∞ [1 : 1 : 1 : 1 : 1]
3 (+,+) no 1 ∞ [1 : 1 : 1 : 1 : 1]
−3 (+,−) no 1 ∞ [1 : 1 : 1 : 1 : 1]
6 (+,−) no 1 0 [1 : 1 : 1 : 1 : 1]
−6 (+,−) no 1 −1/5 [1 : 1 : 1 : 1 : 1]

That is, we obtain:

C(Q) = {[±1 : ±1 : ±1 : ±1 : ±1]}.

Answer: There is no d ∈ Q, d �= 0, 1, such that 0,±1, . . . ,±5 form an arith-
metic progression on an Edwards curve Ed.

3.3. Arithmetic progressions on elliptic curves in Weierstrass form.
Let E be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a2, a3, a4, a6 ∈ Q.

A set of rational points P1, . . . , Pn ∈ E(Q) is said to be an arithmetic progression
on E of length n if the x-coordinates form an arithmetic progression. Note that
any two Weierstrass equation for an elliptic curve are related by a linear change
of variables with x-coordinate of the form x = u2x′ + r. Therefore, an arithmetic
progression on an elliptic curve given by a Weierstrass equation is independent of
the Weierstrass model chosen. Thus, without loss of generality, we can work with
short Weierstrass equation:

E : y2 = x3 +Ax+B, A,B ∈ Q.

Let a, q, Yn ∈ Q, n = 0,±1,±2 such that (a+nq, Yn) ∈ E(Q), n = 0,±1,±2. Then
we have

Y 2
2 = (a+ 2q)3 +A(a+ 2q) +B,

Y 2
1 = (a+ q)3 +A(a+ q) +B,

Y 2
0 = a3 +Aa+B,

Y 2
−1 = (a− q)3 +A(a− q) +B,

Y 2
−2 = (a− 2q)3 +A(a− 2q) +B.

Bremner [Bre99] reduced the previous system of 5 equations to the following
quadric in P4:

−R2 + 4S2 − 6T 2 + 4U2 = V 2,

where{
a = 6(S2 − 2T2 + U2), q = 6(R2 − 3S2 + 3T2 − U2),

A = −36(R4 − 9R2S2 + 21S4 + 6R2T2 − 39S2T2 + 21T4 + R2U2 + 6S2U2 − 9T2U2 + U4),

B = 216(R4S2 − 9R2S4 + 20S6 + 4R4T2 − 12R2S2T2 − 21S4T2 + 24R2T4 − 21S2T4

+20T6 + R4U2 − 8R2S2U2 + 24S4U2 − 8R2T2U2 − 12S2T2U2 − 9T4U2 + R2U4 + 4S2U4 + T2U4).
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COVERING TECHNIQUES AND RATIONAL POINTS ON GENUS 5 CURVES 97

Bremner parametrizes the quadric above obtaining:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R = w2 − 8wx+ 12wy − 88wz + 4x2 − 6y2 + 4z2,
S = −w2 + 2wx+ 12xy − 4x2 − 8xz − 6y2 + 4z2,
T = −w2 + 2wy + 4x2 − 8xy + 6y2 − 8yz + 4z2,
U = −w2 + 2wz + 4x2 − 8xz − 6y2 + 12yz − 4z2,
V = −w2 + 4x2 − 6y2 + 4z2.

Now we impose (a± 3q, Y±3) ∈ E(Q), for some Y±3 ∈ Q. This implies:

(3.2) 4R2 − 6S2 + 4T 2 − U2 = V 2
1 , −4R2 + 15S2 − 20T 2 + 10U2 = V 2

2 .

The equations (3.2) define a variety V of dimension 3 in P5. Elliptic curves on
Weierstrass form over Q with 7 points in arithmetic progressions are characterized
by the rational point of a variety of dimension 3, which is still an intractable problem
nowadays. Nevertheless, Bremner noticed that if we intersect this variety with the
one with equations w = x and z = 0, we obtain the solution to (3.2) that gives:

(a, q) = (0, 6xy(x− y)(x− 2y)) ,
(A,B) = x2y2(x− y)2(x− 2y)2(−252, 324(x2 − 2xy + 2y2)2).

Now, with the restrictions above, we impose (a±4q, Y±4) ∈ E(Q), for some Y±4 ∈ Q.
This implies:

(3.3)

{
z2 = x4 + 20x3y − 64x2y2 + 40xy3 + 4y4

w2 = x4 − 28x3y + 80x2y2 − 56xy3 + 4y4

}
,

for some w, z ∈ Q. Bremner checked that each equation on (3.3) corresponds to the
elliptic curve with Cremona reference 840e2 that has rank 1 and therefore he built
a infinite family of elliptic curve on Weiersstrass form with 8 points in arithmetic
progression. Nevertheless, he could not prove if there are 9 points in arithmetic
progression in his family of elliptic curves. Then Bremner asserted:

Bremner: “For nine points in the arithmetic progression, it is necessary to
satisfy ( 3.3) simultaneously, and this corresponds to determining rational points on
a curve of genus 5. There are only finitely many such points, and it seems plausible
that they are given by ±(x, y) = (1, 0), (0, 1), (1, 1), (2, 1) (each leading to degenerate
progressions) but we are unable to verify this”.

Now, our objective in this section is to verify the previous assumption. Let us
denote by p1(t) = t4 + 20t3 − 64t2 + 40t+ 4, p2(t) = t4 − 28t3 + 80t2 − 56t+ 4 and

C : {z21 = p(t) , z22 = q(t)}.
Therefore to compute all solutions to (3.3) is equivalent to computing C(Q). Then
we apply the algorithm from section 2. Both polynomials p1 and p2 factorize over
the same quadratic fields: Q(

√
30), Q(

√
35), Q(

√
42). Notice that δ = 1 always

belongs to S. Let L = Q(
√
D), for D ∈ {30, 35, 40}, then rankZ H

1
(±,±)(L) > 1.

Therefore we can not apply the elliptic curve Chabauty method and our algorithm
does not compute C(Q). Nevertheless, we can check that in fact C is diagonal. We
have the relations: ⎧⎨⎩ p(t) + q(t) = 2(2− 2t+ t2)2

7p(t) + 5q(t) = 12(−2 + t2)2

5p(t) + 7q(t) = 12(2− 4t+ t2)2

⎫⎬⎭ .
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98 ENRIQUE GONZÁLEZ-JIMÉNEZ

That is, another model for the curve C is

C :

⎧⎨⎩ z21 + z22 = 2z23
7z21 + 5z22 = 12z24
5z21 + 7z22 = 12z25

⎫⎬⎭ .

Then we can apply the algorithm from section 2.1. In our case we have

M̂C =

⎛⎝1 1 −2 0 0
7 5 0 −12 0
5 7 0 0 −12

⎞⎠ (2 4 3 5)
−→

Echelon

MC −→ RC =

⎛⎝ −1 2
1/6 5/6
−1/6 7/6

⎞⎠ .

Let be (j3, j4) = (3, 1), then L = Q(α3,j3 , α4,j4) = Q(
√
7) and S̃ = {1, 2, 3, 6}.

Then the following table shows all the data necessary to compute C(Q) and the
solutions of (3.3):

δ signs Hδ
signs(L) = ∅? rankZ H

δ
signs(L) t P ±(x, y)

1 (+,−) no 1
1
∞ [1, 1, 1, 1, 1]

(1, 1)
(1, 0)

2 (+,+) no 1 ∞ [1, 1, 1, 1, 1] (1, 0)
3 (+,+) yes − − − −

6 (+,+) no 1
0
2

[1, 1, 1, 1, 1]
(0, 1)
(2, 1)

Looking at the previous table, we obtain

C(Q) = {[±1,±1,±1,±1,±1]},
which allows us to prove the following:

Fact: There are no nine points in arithmetic progression on the family of elliptic
curves

E : Y 2 = X3 + AX +B,

{
A = −252x2y2(x− y)2(x− 2y)2,

B = 324x2y2(x− y)2(x− 2y)2(x2 − 2xy + 2y2)2.

3.4. Q-derived polynomials. A univariate polynomial p(x) ∈ Q[x] is called
Q-derived if p(x) and all its derivatives split completely over Q (i.e. all their roots
belong to Q). Note that if q(x) is Q-derived then for any r, s, t ∈ Q, the polynomial
rq(sx + t) is Q-derived too. Therefore a relation between Q-derived polynomials
is established: two Q-derived polynomial p(x) and q(x) are equivalent if q(x) =
rp(sx+ t) for some r, s, t ∈ Q. Buchholz and MacDougall considered the problem
to classifying all Q-derived polynomials up to the above relationship in [BM00]:

Conjecture. All Q-derived polynomials are equivalent to one of the following:

xn, xn−1(x− 1), x(x− 1)

(
x− v(v − 2)

v2 − 1

)
, x2(x− 1)

(
x− 9(2w + z − 12)(w + 2)

(z − w − 18)(8w + z)

)
for some n ∈ Z, v ∈ Q, (w, z) ∈ E(Q) where E : z2 = w(w − 6)(w + 18).

A polynomial is of type pm1,...,mr
if it has r distinct roots and mi is the mul-

tiplicity of the i-th root. Buchholz and MacDougall [BM00] proved the above
conjecture under the two hypotheses: non existence of Q-derived polynomials of
type p3,1,1 and p1,1,1,1.
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COVERING TECHNIQUES AND RATIONAL POINTS ON GENUS 5 CURVES 99

3.4.1. Q-derived polynomials of type p3,1,1. Let q(x) be a Q-derived polynomial
of type p3,1,1. Then without loss of generality we can assume that q(x) = x3(x −
1)(x−a) for some a ∈ Q with a �= 0, 1. Moreover, the discriminants of the quadratic
polynomials q′′′(x), q′′(x)/x and q′(x)/x2 are all squares over Q (cf. [BM00, §2.3]).
That is, there exist b1, b2, b3 ∈ Q such that

b21 = 4a2 − 2a+ 4 , b22 = 9a2 − 12a+ 9 , b23 = 4a2 − 7a+ 4.

Now, changing a = (X − 3)/(X +3) and bi = Yi/(X +3)3 for i = 1, 2, 3, we obtain
the equivalent problem

(3.4) Y 2
1 = 6(X2 + 15) , Y 2

2 = 6(X2 + 45) , Y 2
3 = X2 + 135,

where X,Y1, Y2, Y3 ∈ Q. Flynn [Fly01] proved that the unique solutions to (3.4)
are (X,Y1, Y2, Y3) = (±3,±12,±18,±12), proving that no polynomial of type p3,1,1
is Q-derived.

Here we give a different proof based on the algorithm described in section 2.
Note that (3.4) defines a diagonal genus 5 curve C with model of the form (2.2)
and associated matrix

MC =

⎛⎝1 0 0 −6 −90
0 1 0 −6 −270
0 0 1 −1 −135

⎞⎠ (1 2 5)
−→

Echelon

RC =

⎛⎝−1/45 1/270
4 1/3
−2 1/2

⎞⎠
Let us apply the algorithm described in section 2.1. In this case we have that
Q(α4,1) = Q; therefore for any choice of j3 we have that L = Q(α3,j3 , α4,1) has

degree less than or equal 2. We use j3 = 3 where L = Q(
√
5) and S̃ = {1, 2, 3, 6}.

The following table shows all the data necessary to compute C(Q):

δ signs Hδ
signs(L) = ∅? rankZ H

δ
signs(L) t P

1 (+,+) no 1 0,∞ [3, 12, 18, 12, 1]
2 (+,−) no 1 8/15, 16/5 [3, 12, 18, 12, 1]
3 (+,+) yes − − −
6 (+,+) yes − − −

Looking at the previous table, we obtain

C(Q) = {[±3,±12,±18,±12,±1]}.
3.4.2. Q-derived polynomials of type p1,1,1,1. In this case, with similar ideas

as the previous case, it may be proved (cf. [BM00, §2.2.3]) that without loss of
generality a polynomial of type p1,1,1,1 can be assumed to be of the form

p(x) = (x− 1)(x− a)(x− b)

(
x− −ab

a+ b+ ab

)
with a, b ∈ Q, a, b �= 1 and a �= b. Furthermore, there must exist z, w ∈ Q such that

(3.5) z2 = r4b
4 − r3b

3 + r2b
2 + r1b+ r0 , w2 = s4b

4 − s3b
3 + s2b

2 + s1b+ s0

where

r4 = 9a2 + 18a+ 9, s4 = 9a2 + 18a+ 9,
r3 = 14a3 + 10a2 + 10a+ 14, s3 = 6a3 − 6a2 − 6a+ 6,
r2 = 9a4 − 10a3 − 6a2 − 10a+ 9, s2 = 9a4 + 6a3 + 18a2 + 6a+ 9,
r1 = 18a4 − 10a3 − 10a2 + 18a, s1 = 18a4 + 6a3 + 6a2 + 18a,
r0 = 9a4 − 14a3 + 9a2, s0 = 9a4 − 6a3 + 9a2.
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100 ENRIQUE GONZÁLEZ-JIMÉNEZ

That is, Buchholz and MacDougall [BM00, §2.2.3] gave a characterization of Q-
derived polynomial of type p1,1,1,1 in terms of rational points on the surface2 S on
P4 defined by (3.5). Note that S could be considered as a genus 5 curve over the
field Q(a). Therefore, if we fix a ∈ Q and we denote by Sa the corresponding genus
5 curve, we may apply the algorithm described in section 2 to compute Sa(Q).

Appendix A. On quartic elliptic curves

A.1. Rational points. Let q(t) be a monic quartic separable polynomial in
K[t]. Then the equation y2 = q(t) defines a genus 1 curve, which we call F . The
purpose of this section is to give a method that allows to compute the set of points
F (K). This method is Proposition 14 from [GJX13b]. We include its statement
and proof (due to Xavier Xarles) for the sake of completeness:

Proposition A.1. Let F be a genus 1 curve over a number field K given by
a quartic model of the form y2 = q(t), where q(t) is a monic quartic polynomial
in K[t]. Thus, the curve F has two rational points at infinity, and we fix an
isomorphism from F to its Jacobian E = Jac(F ) defined by sending one of these
points at infinity to O, the zero point of E. Then:

(1) Any 2-torsion point P ∈ E(K) corresponds to a factorization q(t) =
q1(t)q2(t), where q1(t), q2(t) ∈ L[t] quadratics and L/K is an algebraic extension of
degree at most 2.

(2) Given such a 2-torsion point P , the degree two unramified covering χ :
F ′ → F corresponding to the degree two isogeny φ : E′ → E determined by P
can be described as the map from the curve F ′ defined over L, with affine part
in A3 given by the equations y21 = q1(t) and y22 = q2(t) and the map given by
χ(t, y1, y2) = (t, y1y2).

(3) Given any degree two isogeny φ : E′ → E, consider the Selmer group Sel(φ)
as a subgroup of K∗/(K∗)2. Let SL(φ) be a set of representatives in L of the image
of Sel(φ) in L∗/(L∗)2 via the natural map. For any δ ∈ SL(φ), define the curve
F ′(δ) given by the equations δy21 = q1(t) and δy22 = q2(t), and the map to F defined
by χ(δ)(t, y1, y2) = (t, y1y2δ). Then

F (K) ⊆
⋃

δ∈SL(φ)

χ(δ)({(t, y1, y2) ∈ F ′(δ)(L) : t ∈ P1(K)}).

Proof. (Xarles) First we prove (1) and (2). Suppose we have such a fac-
torization q(t) = q1(t) q2(t) over some extension L/K, with q1(t) and q2(t) monic
quadratic polynomials. Then the covering χ : F ′ → F from the curve F ′ defined
over L, with affine part in A3 given by the equations y21 = q1(t) and y22 = q2(t)
and the map given by χ(t, y1, y2) = (t, y1y2), is an unramified degree two covering.
So F ′ is a genus 1 curve, and clearly it contains the preimage of the two points
at infinity, which are rational over L, hence it is isomorphic to an elliptic curve
E′. Choosing such isomorphism by sending one of the preimages of the fixed point
at infinity to O, we obtain a degree two isogeny E′ → E, which corresponds to a
choice of a two torsion point.

So, if the polynomial q(t) decomposes completely in K, the assertions (1) and
(2) are clear since the number of decompositions q(t) = q1(t) q2(t) as above is equal
to the number of points of exact order 2. Now the general case is proved by Galois

2A similar characterization has been done by Stroeker [Str06].
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COVERING TECHNIQUES AND RATIONAL POINTS ON GENUS 5 CURVES 101

descent: a two torsion point P of E is defined over K if and only if the degree two
isogeny E′ → E is defined over K, so if and only if the corresponding curve F ′

is defined over K. Hence the polynomials q1(t) and q2(t) should be defined over
an extension of L of degree ≤ 2, and in case they are not defined over K, the
polynomials q1(t) and q2(t) should be Galois conjugate over K.

Now we show the last assertion. First, notice that the curves F ′(δ) are twisted
forms (or principal homogeneous spaces) of F ′, and it becomes isomorphic to F ′

over the quadratic extension of L adjoining the square root of δ.
Consider the case where L = K. So F ′ is defined over K. For any δ ∈ Sel(φ),

consider the associated homogeneous space D(δ); it is a curve of genus 1 along with
a degree 2 map φ(δ) to E, without points in any local completion, and isomorphic
to E′ (and compatible with φ) over the quadratic extension K(

√
δ). Moreover, it

is determined by such properties (see [Coh07, §8.2]). So, by this uniqueness, it
must be isomorphic to F ′(δ) along with χ(δ). The last assertion also is clear from
the definition of the Selmer group.

Now, the case L �= K. The assertion is proved just observing that the commu-
tativity of the diagram

Sel(φ) ��

��

Sel(φL)

��
K∗/(K∗)2 �� L∗/(L∗)2

where the map Sel(φ) → Sel(φL) is the one sending the corresponding homogeneous
space to its base change to L. �

A.2. A Galois theory exercise on quartic polynomials. We show an al-
gorithm to factorize a quartic polynomial as a product of two quadratic polynomials
over an extension of degree at most two.

Let be a quartic polynomial p(t) = t4 + at3 + bt2 + ct+ d over a number field
K, and its factorization given by

p(t) = (t− α1)(t− α2)(t− α3)(t− α4),

over an algebraic closure K. Then all the factorizations of p(t) as product of two
quadratic polynomials are of the form p(t) = p1(t)p2(t) where:

p1(t) = (t2 − (α1 + α2)t+ α1α2) and p2(t) = (t2 − (α3 + α4)t+ α3α4).

There are three polynomials related to a quartic polynomial that are of great utility
for the study of the Galois group of the quartic polynomial p(t). These are the cubic
resolvent of p(t):

r(t) = t3 − bt2 + (ac− 4d)t− a2d+ 4bd− c2,

and if β ∈ K is a root of r(t), define

r1(t) = t2 − βt+ d, Δ1 = disct(r1) = β2 − 4d,
r2(t) = t2 + at+ (b− β), Δ2 = disct(r2) = 4β + a2 − 4b.

Lemma A.2. If Δ2 �= 0 then p1(t), p2(t) ∈ K(
√
Δ2)[t]. Otherwise, p1(t), p2(t) ∈

K(
√
Δ1)[t].
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102 ENRIQUE GONZÁLEZ-JIMÉNEZ

Proof. First suppose Δ2 �= 0. Let be γ = α1+α2− (α3+α4). Then γ2 = Δ2.
Define

f(t) = 1
2 (t− a),

g(t) = 1
8 (4b− a2 + 2(a4−6a2b+8b2+4ac−32d)

a3−4ab+8c x+ x2 − 3a2−8b
a3−4ab+8cx

3 + 1
a3−4ab+8cx

5),

then

α1 + α2 = f(γ), α1α2 = g(γ), α3 + α4 = f(−γ), α3α4 = g(−γ).

That is, p1(t), p2(t) ∈ K(γ)[t] = K(
√
Δ2)[t].

Now, assume Δ2 = 0 and let be δ = (α2 −α3)(α2 −α4). Then δ2 = Δ1 and we
have

α1 + α2 = α3 + α4 = −a

2
, α3α4 =

c

a
+

δ

2
, α1α2 =

d

α3α4
.

That is, p1(t), p2(t) ∈ K(δ)[t] = K(
√
Δ1)[t]. �

Remark A.3. There is a nice relationship between the elliptic curves defined
by the quartic p(t) and the cubic −r(−x) such that the lemma above could be
obtained. Let us denote by

F : v2 = p(u) = u4 + au3 + bu2 + cu+ d =

4∏
i=1

(u− αi).

E : y2 = −r(−x) = x3 + bx2 + (ac− 4d)x+ a2d− 4bd+ c2 =

4∏
j=2

(x+ δj),

δi = α1αi + αjαk such that {1, 2, 3, 4} = {1, i, j, k}. Then, there exists an isomor-
phism φ : F −→ E defined over Q. Now, let us denote γi = α1 + αi − αj − αk for
{1, i, j, k} = {1, 2, 3, 4}. Assume that γi �= 0 for i = 2, 3, 4, then we have

φ([1 : 1 : 0]) = [0 : 1 : 0] , φ([1 : −1 : 0]) =

(
1

4
s21 − s2,

1

8
δ2δ3δ4

)
,

φ(αi, 0) =

⎛⎝αi

⎛⎝αi −
∑
i �=j

αj

⎞⎠ ,
∏
j �=i

(αi − αj)

⎞⎠ ,

where sk denote the symmetric polynomial of degree k on α1, . . . , α4. Moreover,
φ(αi, 0) = φ(α1, 0) + (−δj , 0) for j = 2, 3, 4.

Now, for the inverse we have:

φ−1(−δi, 0) =

⎛⎜⎜⎝g(γi)− g(−γi)

γi
,

−
∏
j �=i

(δi − δj)

γ2
i

⎞⎟⎟⎠ .

Let us move the point (−δi, 0) to (0, 0). We obtain a new Weierstrass equation
Wi : y2 = x(x2 +Aix+Bi) where

Ai = −2δi +
∑
j �=i

δj and Bi =
∏
j �=i

(δi − δj).
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If we denote by ψi the isomorphism between F and Wi and by (xi, yi) = ψ−1(0, 0)
we obtain the equalities

−Bi

yi
= γ2

i = disct(t
2 + at+ (b− δi)),

the second one coming from the lemma above.
Finally, let us assume that γi = 0 for some i ∈ {2, 3, 4}. For simplicity, let

i = 2. In this particular case we have:

φ([1 : 1 : 0]) = [0 : 1 : 0] , φ([1 : −1 : 0]) = (−δ2, 0) ,

φ(α1, 0) =

⎛⎝−2α1α2,−
∏
j �=2

(α2 − αj)

⎞⎠ , φ(α2, 0) = −φ(α1, 0) ,

φ(α3, 0) =

⎛⎝−2α3α4,−
∏

j>k,k �=1

(αk − αj)

⎞⎠ , φ(α4, 0) = −φ(α3, 0) ,

and for the inverse

φ−1(−δ2, 0) = [1 : −1 : 0] ,

φ−1(−δ3, 0) =

(
α3 + α4

2
,
1

4
(α2 − α1)(α3 − α4)

)
, φ−1(−δ4, 0) = −φ−1(−δ3, 0).

Now move the point (−δ2, 0) to (0, 0) and obtain a new Weierstrass equation W2 :
y2 = x(x2 +A2x+B2) where

A2 = α2
3 + α2

4 − 2α1α2 and B2 = (α2 − α3)
2(α2 − α4)

2.

Then if we denote by ψ2 the isomorphism between F and W2 and by [x2 : y2 : z2] =
ψ−1(0, 0) = [1 : −1 : 0] we obtain the equalities

−B2

y2
= (α2 − α3)

2(α2 − α4)
2 = disct(t

2 − δ2t+ d),

the second one coming from the lemma above.

A.3. Diagonal genus 1 curve. Let K be a number field and a, b, c, d ∈ K
such that ad− bc �= 0. Then the matrix

R =

(
a b
c d

)
defines the genus 1 curve C (that we call diagonal) given by the intersection of the
following two quadrics in P3:

(A.1) C :

{
aX2

0 + bX2
1 = X2

2

cX2
0 + dX2

1 = X2
3

}
.

Suppose that there exists P0 = [x0 : x1 : x2 : x3] ∈ C(K), then C is an elliptic
curve and it has a Weierstrass equation. Parametrizing the first conic of C by the
point P0 obtaining

[X0 : X1 : X2] = [−a b x0 x
4
3 − 2 b x1 x

2
3t+ x0 t

2 :
a b x1 x

4
3 − 2 a x0 x

2
3 t− x1 t

2 : x2 (a b x
4
3 + t2)]
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with inverse given by t =
b(x1X2−X1x2)x

2
3

x0X2−X0x2
. Next, we substitute X0, X1, X2 in the

second equation and we obtain the quartic F : z2 = pR(t), where
(A.2)

pR(t) = p(t) = t4 + 4(ad− bc)x0x1t
3 + 2(2(a2dx2

0 + b2cx2
1)− abx2

3))x
2
3t

2−
−4ab(ad− bc)x0x1x

4
3t+ a2b2x8

3,

and (x3X3)
2 = p(t). Then the quartic genus 1 curve F has the Weierstrass equation:

E : y2 = x(x+ a d)(x+ b c).

The trivial points [±x0 : ±x1 : ±x2 : ±x3] ⊆ C(K) goes to {Qi : i = 0 . . . 7} ⊆
F (K) and then to {Pi : i = 0 . . . 7} ⊆ E(K):

i Ti Qi Pi

0 [+ + ++] [0 : 1 : 0] O := [0 : 1 : 0]

1 [−−++] (0, a b x4
3) (0, 0)

2 [−++−]
(
−a

x0x
2
3

x1
,−a

x2
2x

4
3

x2
1

)
(−b c, 0)

3 [−+−+]
(
b

x1x
2
3

x0
,−b

x2
2x

4
3

x2
0

)
(−a d, 0)

4 [+ +−+] (0,−a b x4
3)

(
−a b

x2
3

x2
2
, a b(a d− b c)x0x1x3

x3
2

)
5 [+−++]

(
b

x1x
2
3

x0
, b

x2
2x

4
3

x2
0

) (
b d

x2
1

x2
0
,−b dx1x2x3

x3
0

)
6 [−+++]

(
−a

x0x
2
3

x1
, a

x2
2x

4
3

x2
1

) (
a c

x2
0

x2
1
, a cx0x2x3

x3
1

)
7 [+ + +−] [1 : −1 : 0]

(
−c d

x2
2

x2
3
,−c d(a d− b c)x0x1x2

x3
3

)
Note that the set {Pi : i = 0 . . . 7} is generated by P2, P3, P4 and, in particular,

Z/2Z⊗Z/2Z⊕〈P4〉 is a subgroup of E(K). Therefore, the rank of the Mordell-Weil
group of E(K) is, in general, non-zero.

Now, in section A.2 we have described a method to factorize a quartic polyno-
mial as the product of two quadratic polynomials over a quadratic field. Applying
this method to the polynomial p(t) we obtain the factorization p(t) = pi+(t)pi−(t)
over Q(αi) corresponding to the 2-torsion point Pi, for i = 1, 2, 3:

p1+(t) = t2 + 2((a d− b c)x0x1 − x2
2α1)t− a bx4

3, α1 =
√
−c d

p2+(t) = t2 + 2x0((a d− b c)x1 − x2α2)t

+ bx2
0(a cx

2
0 + (2 b c− a d)x2

1 + 2x1r0α2),
α2 =

√
−c(a d− b c)

p3+(t) = t2 + 2x1((a d− b c)x0 − x2α3)t

+ ax2
3(b d x

2
1 + (2 a d− b c)x2

0 − 2x0x2α3),
α3 =

√
d(a d− b c)

and pi−(t) is obtained replacing αi by −αi on pi(t).
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