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Abstract. We give a method for finding rational equations of genus 2
curves whose jacobians are abelian varieties Ay attached by Shimura to
normalized newforms f € S3(Io(IN)). We present all the curves corre-
sponding to principally polarized surfaces Ay for N < 500.

1 Introduction

Given a normalized newform f =} _;a,q" € S2(I5(N)), Shimura [5]-[6] at-
taches to it an abelian variety Ay defined over Q of dimension equal to the degree
of the number field £y = Q({ay}). The Eichler-Shimura congruence makes it
possible to compute at every prime p f N the characteristic polynomial of the
Frobenius endomorphism acting on the Tate module of A;/F, from the coeffi-
cient a, and its Galois conjugates. In consequence, when Ay is Q-isogenous to
the jacobian of a curve C' defined over QQ, the number of points of the reduction
of this curve mod a prime p of good reduction can be obtained from the char-
acteristic polynomial of the Hecke operator T}, acting on H°(Ay, 2'). Among
these jacobian-modular curves, those which are hyperelliptic of low genus are
especially interesting for public key cryptography.

As an optimal quotient of the jacobian of Xo(N), Jo(N), the abelian variety
Ay has a natural polarization induced from Jo(N). We will focus our attention
on polarized surfaces Ay which are Q-isomorphic to jacobians of genus 2 curves.
Wang [7] gave a first step in the determinations of such curves. More precisely,
using modular symbols he computed the periods of f and its Galois conjugate
and presented Ay as a complex torus with an explicit polarization. For those
principally polarized Ay, Wang computed numerically Igusa invariants by means
of even Thetanullwerte and built an hyperelliptic curv e C'/Q such that Jac C' ~
Ay over Q. The curves C obtained with this procedure have two drawbacks:
they have huge coefficients, and, moreover, we only know that their jacobians
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are Q-isomorphic to the corresponding abelian varieties Ay, but we don’t know
whether they are Q-isomorphic, or even Q-isogenous. Frey and Muller [2] looked
for a curve C'/Q among the twisted curves of C' such that the local factors of the
L-series of JacC” and Ay agree for all primes less than a large enough bound.

In this paper we want to go one step further in the determination of these ja-
cobian modular surfaces. We describe a more arithmetical and efficient method,
based on odd Thetanullwerte, which solves the problem up to numerical ap-
proximations. Our method provides equations Cr : y? = F(z) with F(z) € Q[z]
such that Jac Cr or Jac C_p is Ay. The sign is chosen using the Eichler-Shimura
congruence.

We have implemented a program in MAGMA to determine modular jaco-
bian surfaces and equations for the corresponding curves. We have found all the
modular jacobian surfaces of level N < 500. The equations obtained for the cor-
responding curves are presented at the end of the paper. It is remarkable that
almost all of them are minimal equations over Z[1/2].

2 Theoretical Foundations

A polarized abelian variety (A4, @) of dimension g defined over C can be realized
as a complex torus T4 = C9/A, where A is the period lattice of A with respect
to a basis of H°(A, 1), with a nondegenerate Riemann form defined on A. We
choose a symplectic basis for A, and write it as a 2g x g matrix 2 = (£21]£25). The
normalized period matrix Z = (27 12, satisfies the Riemann conditions Z = tZ,
Y =1ImZ is positive definite and the Riemann theta function:

0(z) :=0(z,2) = Z exp(mi'n.Z.n + 2mi'n.z)
nez9

is holomorphic in CY9. The values of the Riemann theta function at 2-torsion
points are called Thetanullwerte. Historically, only the even Thetanullwerte, i.e.,
the values of the theta function at even 2-torsion points have been studied, since
the values at odd 2-torsion points are always zero. Anyway, the values of the
derivatives of the theta function at the odd 2-torsion points have nice properties,
and also do provide useful geometrical information ([4]).

We now give the theoretical results which allow one to recognize when a
principally polarized abelian surface is the jacobian of a genus 2 curve.

Proposition 1. Let (A, ©) be an irreducible principally polarized abelian surface
defined over a number field K. There exists a hyperelliptic curve C of genus 2
defined over K such that A = JacC.

Proof: It is well known that the irreducibility of A implies that A = JacC
for a certain hyperelliptic curve C' defined over C. But for genus 2 curves, the
Abel-Jacobi map in degree 1 is an isomorphism between the curve C and the @
divisor in JacC' = A. Hence, we can assume that C = ©, which is defined over
K. O
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Proposition 2. A principally polarized abelian surface (A, ©) is not irreducible
if and only if there is an even 2-torsion point P such that the corresponding even
Thetanullwerte vanishes.

Proof: If (A4, O) is irreducible principally polarized, then it is isomorphic to the
jacobian of a hyperelliptic genus 2 curve, and hence every even Thetanullwerte
is non-zero.

Conversely, assume that (A, ©) is the product of two elliptic curves Fy, Es.
This means that the theta function 64 associated to the pair (4, ©) is equal to
0102, where we denote by 6; the theta function associated to the elliptic curve
E;. Let O; be the zero point in E;, which is the unique odd 2-torsion point in E;.
The pair O = (01,02) € E; x E5 gives an even two torsion point in A, which
satisfies 4(0) = 0. O

Once we know that a principally polarized abelian surface A is a jacobian,
we want a method to find a curve C' such that A ~ JacC. We would like to
be careful enough to assure that, when A is defined over a number field K, the
curve C and the isomorphism A ~ Jac C' are also defined over K. The following
result, which can be found in [4], will be basic for our purpose.

Theorem 1. Let F(X) = agX%+asX°+...+a1X +ag € C[X] be a separable
polynomial of degree 5 or 6. Let £2 = (£21](23) be the period matriz of the hyper-

d d
elliptic curve Cr : y*> = F(x) with respect to the basis wy = —x, we = rer of

HO(Cp 2') and any symplectic basis of H1(Cp,Z), and take Zp = QIIQQ.

T
a) The roots oy, of the polynomial F' are the ratios ﬂ, given by the solutions
Tk,1

)

(g1, %k,2) of the siz homogeneous linear equations

(e o) () -

where wy, ..., wg are the siz odd 2-torsion points of J(Cr), given by
0 0 0 1
_lz 1 _lz 1
w1 =3 F(l) 2<1>’ w2 =3 F(1) 2(1)7
1 1 1 1
_ly 1 _ly 1
W3 =34F \ +3 o) Wa=24F | +3 1)
1 0 1 1
_lz 1 _1lz 1
Ws =328 | 2\1) o724 210

When deg F' = 5, one of these ratios is infinity and we discard it.
b) Let W; = (aj,0) be the Weierstrass point corresponding to w;. Denote by
H([W;] the hyperplane of P! given by the equation

HIVI00. %) = (o) o) ) o ()
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The discriminant Aqiq(Cr) of the polynomial F satisfies the relation

Aaig(Cp)" = 2120610790 det 273 1., HW;](1, ax)? if deg(F) = 6;

j<k

Aug(Cp)® = 28060780 det Q72 T]._, H[W;](1,ax)? if deg(F) = 5.

i<k
3 Determination of Hyperelliptic Equations

We explain here how one can, given an irreducible abelian surface (4, @) defined
over K, look for a hyperelliptic curve Cr : Y2 = F(X) such that A is K-
isomorphic to Jac Cr. We have divided our method into four steps.

Step 1: Period matrix. The first step consists in choosing a suitable period
matrix {2 for A. We have to fix a symplectic basis of Hq(A,Z), a convenient basis
of HY(4, (2114 ) and compute the corresponding period matrix. The following
result assures us that the basis of regular differentials can be chosen arbitrarily.

Proposition 3. ([3]). Let C/K be a genus 2 curve. For every linearly indepen-
dent pair of reqular differentials wy,ws € H°(C, Qé/K), there exists a polynomial
F(X) € K[X] of degree 5 or 6 without double roots such that the functions on
C given by

w1 dx

Xr = 5

Y
w2 w2
satisfy the equation y* = F(z).

Step 2: Weierstrass points. In this step, we compute the roots aj of the
polynomial F' given by the first part of the theorem 1], and we take the monic
polynomial Fy(X) =[], (X — o) € K[X].

Step 3: Leading coefficient. With the formulas given for the discriminant
in part b) of theorem [Il we obtain af’ € K (or ai’ € K if degFy = 5). We
choose one of the tenth roots ag € K of this value and take the polynomial
Fi(X) =a5Fy(X) € K[X].

Step 4: Hyperelliptic equation. At this point, it only remains to find the
tenth root of unity ¢ such that F' = (Fj. Since the curves Cr and C\2p with
A € K* are K-isomorphic, it suffices to consider only the cases ( =1 and ( = —1,
when —1 ¢ K2. First we check whether Cr and C_p are K-isomorphic. If they
are not, then we look if Jac Cr and Jac C_p are not K-isogenous. In this case,
by Faltings Theorem, only one of their L-series will agree with the L-series of
A and this will give the right sign for F = +F}. In fact, it will suffice to find
a prime P in K of good reduction for the curves C'r and C_p such that their
reductions mod P have a different number of points.

In the case that C'r and Cg are not K-isomorphic and JacCp and JacC_p
are K-isogenous, we cannot determine the right sign. Anyway, we know that
both jacobians Jac Cr and Jac C_ are K(y/—1)-isomorphic to Ay, and one of
them is K-isomorphic.
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4 Modular Computations

We apply the method described in the previous section to present the irreducible
principally polarized two-dimensional factors of Jo (N )2V as jacobians of curves,
for N < 500.

In order to do this, we begin looking for the normalized newforms f =
Y ang™ € Sa(Ip(N)) such that the number field Ef = Q({a,}) is quadratic.
For each of these newforms, we take an integral basis of the C-vector space gen-
erated by f and its Galois conjugate ? f. We also determine a symplectic basis
of Hi(Ay,Z). If Ay is principally polarized, we compute the period matrix with
respect to these bases, using the package on modular symbols written by W.
Stein in Magma.

Next, we check the irreducibility of Ay by means of proposition 2l We remark
that all the Ay studied are irreducible.

We now apply the method of section 3. We follow the steps described there,
to find the corresponding curves Cr : Y2 = F(X). Since we are working over
Q, we can change the polynomial F(X) in order to obtain an integral equation.
We multiply F(X) by d = t/b, where t € Z is the square of the l.c.m. of the
denominators of the coefficients of F', and b € Z is the g.c.d. of their numera-
tors divided by its maximum square-free factor. It is worth remarking that the
equations obtained have very small coefficients, even before finding the integral
model.

The only case in which we have found a curve Cr such that JacCpr and
Jac C_p are Q-isogenous occurs for N = 256, but in fact both curves are already
Q-isomorphic, because the corresponding polynomial F(X) is odd.

We have used three tests to check the correctness of our equations. First, we
have computed the absolute Igusa invariants of the curves Cr in two different
ways: algebraically from the coefficients of our equations, and numerically from
the even Thetanullwerte of the period matrix. They have agreed to high accuracy
in all cases. Second, we have compared the local factors of the L-series of Jac Cp
and Ay for all primes p < 100 not dividing Ag;4(Cr). Finally, we have computed
the odd part of the conductor of C'r using the program genus2reduction by
Q. Liu. In all cases, this odd part agreed with the odd part of the square of the
level of the newform f, as it should by [1]. It is worth noting that in almost all
cases our equations are minimal over Z[1/2].

We illustrate our computations with an example. The first level for which
Jo(N)™W has a proper two-dimensional factor is N = 63. Using Magma we
identify the corresponding normalized newform f:

f=a+ V3@ +q"—2V3¢" +¢" — V3¢ — 6¢"° + 2v3¢" +2¢" + ...
An integral basis of the space (f,7 f) is

fi=a+d +q =64 +2¢" + ..., fo=q"—2¢° —¢* +2¢" + ...
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A basis for Hi(Ay,Z) in terms of modular symbols is given by
m={-55.0} = {=25,0} + {550} = {5, 0} = {—3, -3},
1= {=25,0 — (4,0} + (=35, 0} — (=0} — {~4, -1},
v =1{-21,0} +{-355.0} = {—45.0} = {—55.0} = {—3. -3} - {3, 5},
1= (35,00 — {=F5,0h + {0} — {~,0} + {~ .0}

_{ 60’0} { 7 %}

Computing the intersection matrix of these paths we see that A is principally
polarized. We find a symplectic basis for Hy(Af,Z), and compute the periods
of f1, f with respect to these bases. We obtain as period matrix §2 = (21 | §22)
for Ay:

0 — 0.3590439 ... 4+ 7% 0.6218823 ... —2.2150442 ...+ 7% 1.2788564 . ..
P\ —2.2150442 ... + 4 % 3.8365691 ... 1.0771318...+ i 0.6218823...

0, — —1.4969563 ...+ 7 % 1.2788564 ... —1.8560003 ... — ¢ * 0.6569740 . ..
27\ —3.3529566 ... +i % 0.6218823... —1.1379124 ... 4 i * 3.2146868 . . .

We apply the method described in section 3, to obtain the monic polynomial
Fo(z) = 2% — 5423 — 27.

The coefficient ag is 1/12, so that F;(z) = 1/12Fy(«). The first prime for which
the local factors of Cp, and C_p, are different is p = 67. Comparing with the
polynomial

2*(z +p/r — ap)(z +p/r =7 ap),
we see that the right sign is —1. We multiply —F; (z) by 62 to obtain an integral
equation. We can finally assert that Ay is the jacobian of the curve

y? = =325 4+ 1622 + 81.
The Igusa invariants of this curve are
23.37° ) 3-373.103 ) 5-37%.881
—_— 9= ————7— —_——
3.3 7 2.73 2373
We have also computed these Igusa invariants from the even Thetanullwerte

associated to the period matrix Z, obtaining, of course, the same result.
Using Q. Liu’s program, we find a minimal equation for the curve C:

11 = 13 =

Y? = X% 4+ 54X3 — 27,

which is obtained from our equation through the change z = 3/X, y = 9Y/ X3,
which corresponds essentially to a different ordering of the modular forms f7, fo
as basis of (f,7 f).
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5 Tables

We present the equations that we have obtained in the following table. We
have labelled the irreducible principally polarized two-dimensional factors Ay of
Jo(N)W as Syx. We have ordered the two-dimensional factors of Jo(N)MW
following the output of the Magma function SortDecomposition. The letter X
denotes the position of Ay with respect to this ordering. The third column
indicates when we know that the given equation is minimal over Z[1/2].

Ay Cr:y?> = F(z), JacCp=~ Ay minimal?
Soza  y? =28 —8x® +22% + 223 — 1122 4+ 102 — 7 yes
Soga  y? =8 —4x® —122* +22% + 822 + 82 — 7 yes
Ssia y* =25 —82° + 62" + 1823 — 112% — 14z — 3 yes
Seap  y? = —3x% + 16223 4 81

Sesp  y? = —a° —42° + 321 + 2827 — T2? — 62z + 42 yes
Sesc y? = —1525 + 362* — 3023 + 7222 — 39 yes
Serp y? =ab +22° + 2t — 223 222 — 4 + 1 yes
Srap Y2 =28 —4x® + 22t + 623 + 22+ 22+ 1 yes
Ss7a  y? =28 —22* — 623 — 1122 — 62 — 3 yes
Soza Y2 =a% 4+ 22* — 623 + 522 + 62+ 1 yes
Si03a y* = a8+ 221 + 223 + 522 + 60 + 1 yes
S1074 yQ =26 + 225 + 5t +22% — 222 —4x —3 yes
SllSB y2 - xG + 2%4 + 101’3 + 51’2 + 6x =+ 1 yes
51173 y2 = IG — 101’3 — 27 yes
Si17¢ y2 = —32% — 122% — 1823 — 4822 — 362 — 27 yes
Sizsa y? = a8+ 22° + 5% + 102 + 1022 + 8z + 1 yes
Siosp  y? = 528 — 102° + 252* — 5023 + 5022 — 402 + 5 yes
Sizza y? =% — 22° +52% — 623 + 1022 — Sz + 1 yes
Sizsp y? = —325 — 2225 — 352* + 5023 + 742? — 100z + 29 yes
Sissp  y? = a® + 62 — 1023 + 922 — 30z — 11 yes
Siarp y? =25 —da* +22% + 827 — 122+ 9 yes
Sieip y? =28 4+ 6x° + 172% + 2223 + 2622 + 120 + 1 yes
Siera y? =28 — 42 + 20 — 223 — 322 + 22 — 3 yes
S175E y2 =26 4+ 2% — 32% 4+ 623 — 1422 + 82z — 3 yes
Sirra y? =28+ 221 — 623 + 522 — 62 + 1 yes
Simrp y? = —152% — 1202° — 5302* — 71023 — 51522 — 30z + 45

Sissp Y2 =25 —at+ad+ 22 20+ 1 yes
SlggE y2 = 33‘6 — 2.733 — 27 yes
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Ay Cr:y?> = F(x), JacCp=~ Ay minimal?
Si014 y? = a8+ 221 + 223 + 522 — 62 + 1 yes
Soosp y? = 28 + 2% + 1023 + 522 — 62 + 1 yes
Sonop  y? = a8 — 4x® + 82 — 823 + 822 + 4z + 4 yes
So13 y? =% +22* + 223 — 72?2 + 62 — 3 yes
Sooic y? = a8 — 225 + 2t + 623 + 222 + 4z + 1 yes
Soouc y? = —2x8 — 825 — 34x* — 4823 — 11822 4 56 + 154 yes
Sooap y? = 228 — 8x® + 34z* — 4823 4 11822 + 56 — 154 yes
Soazc y* = a8 + 62 — 27 yes
Sosop y? = 2028 — 14025 + 325 2% + 1050 23 + 42522 + 160 x + 80

Soser y* = 22° — 128 ves
Soe1a y? =5 — 621 + 1023 + 2122 — 30z + 9 yes
Sosip Y2 = —3x8 + 182* 4+ 302% — 6322 — 90z — 27 yes
Sog1ip y? = —32% 4+ 621 — 182% + 3322 — 182 + 9 yes
Sasec Y2 = —8x° + 562 — 8223 — 31222 — 2642 — 64 yes
Sossn Y2 = 820 +162° +132* +62% — 1922 — 8z — 16 yes
Saesc y? =a —22° + 2 — 42 + 222 + 42 + 1 yes
Sorsa y? = =3x8 — 225 + 2 — 1423 + 222 —8x + 1 yes
Soroa y* = =325 —62* — 1823 — 1522 + 182 — 3 yes
Sorop > = —3a° +62° —32* —62% +182%2 — 122+ 9 yes
Sogra Y2 =284 22° — 32t — 623 — 1022 — 42 — 3 yes
Sogoa y? = —a8 — 225 —dat — 423 — 32? — 20+ 1 yes
Soore Y2 = 28— 122 — 823+ 1222 — 122 + 4 yes
Saorp y* = =320+ 3621 — 2423 — 3622 — 362 — 12 yes
Sagoa  y? = —32% — 102° — Tt + 62° 4 62 — 4z + 1 yes
Sassn Y2 = —T52% + 180 2% + 150 2% + 360 2% — 195 yes
Sgasp Y2 = a0 — 42® — 4822 — 20z — 4 yes
Ssase y? = a® — 12254+ 3221+ 2423 +82% — 122+ 4 yes
S3514 y2 =26 — 62% 4+ 1823 + 922 — 18z + 5 yes
Sssic y? = =320 +182% + 5423 — 2722 — 542 — 15 yes
Sassip y? = 2125 — 21025 + 525 2% — 60223 + 71422 + 336 = + 665

Sasre y? = x® + 82* — 823 4 2022 — 122 + 12 yes
Ssrsc y? = 1052°% + 24025 + 550 2* + 450 2% + 32522 + 90« — 155 yes
Ssr6a Y2 = —a® —at + 323+ 322 -4z +1 yes
Sazep y? =a® —a® +22° — 22 +1 yes
Sssop y? =5 — T2 —4a? + 5245 yes
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Ay Cr:y?> = F(z), JacCp ~ Ay minimal?

Sagrr y? = —122°% + 16223 + 324

Sagon Y2 = 2% 4+ 10z + 23z* — 2023 — 4522 + 462 — 11 yes

Sa914 y? =20 4+102* — 623 — 1122 4+ 182 — 7 yes

Suzaa Y2 =28 —22° +62* — 823 + 1022 -8z + 5 yes

Saor Y2 =2 +22% — 1122 -8z — 24 yes

Suoc y? =5 — 223 —T2? —8x + 8 ves

Spr Yy = 325+ 122 + 623 — 2422 - 362 — 27 yes

Saar Y2 = —x8 —22°5 — 72t — 623 — 1322 — 42— 8 yes

Sarer Y2 =2 4+ 22 + 322 + 622 +4x +1 yes

Sirep Y2 =5 — 2% +32% — 622 - 7 yes

Sugsc Y2 = 28 +122° +262* — 3423 — 6722 4+ 902 — 27 yes

Sugga  y? = —3x8 + 182° — 27x* — 1223 — 2722 — 362 — 24 yes
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