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Av. Vı́ctor Balaguer s/n, E-08800 Vilanova i la Geltrú, Spain
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Abstract. We give a method for finding rational equations of genus 2
curves whose jacobians are abelian varieties Af attached by Shimura to
normalized newforms f ∈ S2(Γ0(N)). We present all the curves corre-
sponding to principally polarized surfaces Af for N ≤ 500.

1 Introduction

Given a normalized newform f =
∑

n>0 anqn ∈ S2(Γ0(N)), Shimura [5]-[6] at-
taches to it an abelian variety Af defined over Q of dimension equal to the degree
of the number field Ef = Q({an}). The Eichler-Shimura congruence makes it
possible to compute at every prime p � N the characteristic polynomial of the
Frobenius endomorphism acting on the Tate module of Af /Fp from the coeffi-
cient ap and its Galois conjugates. In consequence, when Af is Q-isogenous to
the jacobian of a curve C defined over Q, the number of points of the reduction
of this curve mod a prime p of good reduction can be obtained from the char-
acteristic polynomial of the Hecke operator Tp acting on H0(Af , Ω1). Among
these jacobian-modular curves, those which are hyperelliptic of low genus are
especially interesting for public key cryptography.

As an optimal quotient of the jacobian of X0(N), J0(N), the abelian variety
Af has a natural polarization induced from J0(N). We will focus our attention
on polarized surfaces Af which are Q-isomorphic to jacobians of genus 2 curves.
Wang [7] gave a first step in the determinations of such curves. More precisely,
using modular symbols he computed the periods of f and its Galois conjugate
and presented Af as a complex torus with an explicit polarization. For those
principally polarized Af , Wang computed numerically Igusa invariants by means
of even Thetanullwerte and built an hyperelliptic curv e C/Q such that Jac C �
Af over Q. The curves C obtained with this procedure have two drawbacks:
they have huge coefficients, and, moreover, we only know that their jacobians
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are Q-isomorphic to the corresponding abelian varieties Af , but we don’t know
whether they are Q-isomorphic, or even Q-isogenous. Frey and Muller [2] looked
for a curve C ′/Q among the twisted curves of C such that the local factors of the
L-series of Jac C ′ and Af agree for all primes less than a large enough bound.

In this paper we want to go one step further in the determination of these ja-
cobian modular surfaces. We describe a more arithmetical and efficient method,
based on odd Thetanullwerte, which solves the problem up to numerical ap-
proximations. Our method provides equations CF : y2 = F (x) with F (x) ∈ Q[x]
such that Jac CF or Jac C−F is Af . The sign is chosen using the Eichler-Shimura
congruence.

We have implemented a program in Magma to determine modular jaco-
bian surfaces and equations for the corresponding curves. We have found all the
modular jacobian surfaces of level N ≤ 500. The equations obtained for the cor-
responding curves are presented at the end of the paper. It is remarkable that
almost all of them are minimal equations over Z[1/2].

2 Theoretical Foundations

A polarized abelian variety (A, Θ) of dimension g defined over C can be realized
as a complex torus TA = Cg/Λ, where Λ is the period lattice of A with respect
to a basis of H0(A, Ω1), with a nondegenerate Riemann form defined on Λ. We
choose a symplectic basis for Λ, and write it as a 2g×g matrix Ω = (Ω1|Ω2). The
normalized period matrix Z = Ω−1

1 Ω2 satisfies the Riemann conditions Z = tZ,
Y = ImZ is positive definite and the Riemann theta function:

θ(z) := θ(z; Z) :=
∑

n∈Zg

exp(πitn.Z.n + 2πitn.z)

is holomorphic in Cg. The values of the Riemann theta function at 2-torsion
points are called Thetanullwerte. Historically, only the even Thetanullwerte, i.e.,
the values of the theta function at even 2-torsion points have been studied, since
the values at odd 2-torsion points are always zero. Anyway, the values of the
derivatives of the theta function at the odd 2-torsion points have nice properties,
and also do provide useful geometrical information ([4]).

We now give the theoretical results which allow one to recognize when a
principally polarized abelian surface is the jacobian of a genus 2 curve.

Proposition 1. Let (A, Θ) be an irreducible principally polarized abelian surface
defined over a number field K. There exists a hyperelliptic curve C of genus 2
defined over K such that A = Jac C.

Proof: It is well known that the irreducibility of A implies that A = Jac C
for a certain hyperelliptic curve C defined over C. But for genus 2 curves, the
Abel-Jacobi map in degree 1 is an isomorphism between the curve C and the Θ
divisor in Jac C = A. Hence, we can assume that C = Θ, which is defined over
K. �	
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Proposition 2. A principally polarized abelian surface (A, Θ) is not irreducible
if and only if there is an even 2-torsion point P such that the corresponding even
Thetanullwerte vanishes.

Proof: If (A, Θ) is irreducible principally polarized, then it is isomorphic to the
jacobian of a hyperelliptic genus 2 curve, and hence every even Thetanullwerte
is non-zero.

Conversely, assume that (A, Θ) is the product of two elliptic curves E1, E2.
This means that the theta function θA associated to the pair (A, Θ) is equal to
θ1θ2, where we denote by θi the theta function associated to the elliptic curve
Ei. Let Oi be the zero point in Ei, which is the unique odd 2-torsion point in Ei.
The pair O = (O1, O2) ∈ E1 × E2 gives an even two torsion point in A, which
satisfies θA(O) = 0. �	

Once we know that a principally polarized abelian surface A is a jacobian,
we want a method to find a curve C such that A � Jac C. We would like to
be careful enough to assure that, when A is defined over a number field K, the
curve C and the isomorphism A � Jac C are also defined over K. The following
result, which can be found in [4], will be basic for our purpose.

Theorem 1. Let F (X) = a6X6 + a5X5 + . . . + a1X + a0 ∈ C[X] be a separable
polynomial of degree 5 or 6. Let Ω = (Ω1|Ω2) be the period matrix of the hyper-

elliptic curve CF : y2 = F (x) with respect to the basis ω1 =
dx

y
, ω2 =

xdx

y
of

H0(CF,Ω
1) and any symplectic basis of H1(CF , Z), and take ZF = Ω−1

1 Ω2.

a) The roots αk of the polynomial F are the ratios
xk,2

xk,1
, given by the solutions

(xk,1, xk,2) of the six homogeneous linear equations

(
∂θ

∂z1
(wk)

∂θ

∂z2
(wk)

)
Ω−1
1

(
X1
X2

)
= 0,

where w1, . . . , w6 are the six odd 2-torsion points of J(CF ), given by

w1 = 1
2ZF

(
0
1

)
+ 1

2

(
0
1

)
, w2 = 1

2ZF

(
0
1

)
+ 1

2

(
1
1

)
,

w3 = 1
2ZF

(
1
0

)
+ 1

2

(
1
0

)
, w4 = 1

2ZF

(
1
0

)
+ 1

2

(
1
1

)
,

w5 = 1
2ZF

(
1
1

)
+ 1

2

(
0
1

)
, w6 = 1

2ZF

(
1
1

)
+ 1

2

(
1
0

)
.

When deg F = 5, one of these ratios is infinity and we discard it.
b) Let Wj = (αj , 0) be the Weierstrass point corresponding to wj. Denote by

H[Wj ] the hyperplane of P1 given by the equation

H[Wj ](X1, X2) :=
(

∂θ

∂z1
(wj)

∂θ

∂z2
(wj)

)
Ω−1
1

(
X1
X2

)
.
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The discriminant ∆alg(CF ) of the polynomial F satisfies the relation

∆alg(CF )7 = 2120a106 π60 det Ω−30
1

∏
j<k H[Wj ](1, αk)2 if deg(F ) = 6;

∆alg(CF )5 = 280a105 π80 det Ω−20
1

∏
j<k H[Wj ](1, αk)2 if deg(F ) = 5.

3 Determination of Hyperelliptic Equations

We explain here how one can, given an irreducible abelian surface (A, Θ) defined
over K, look for a hyperelliptic curve CF : Y 2 = F (X) such that A is K-
isomorphic to Jac CF . We have divided our method into four steps.

Step 1: Period matrix. The first step consists in choosing a suitable period
matrix Ω for A. We have to fix a symplectic basis of H1(A, Z), a convenient basis
of H0(A, Ω1

A/K) and compute the corresponding period matrix. The following
result assures us that the basis of regular differentials can be chosen arbitrarily.

Proposition 3. ([3]). Let C/K be a genus 2 curve. For every linearly indepen-
dent pair of regular differentials ω1, ω2 ∈ H0(C, Ω1

C/K), there exists a polynomial
F (X) ∈ K[X] of degree 5 or 6 without double roots such that the functions on
C given by

x =
ω1

ω2
, y =

dx

ω2

satisfy the equation y2 = F (x).

Step 2: Weierstrass points. In this step, we compute the roots αk of the
polynomial F given by the first part of the theorem 1, and we take the monic
polynomial F0(X) =

∏
k(X − αk) ∈ K[X].

Step 3: Leading coefficient. With the formulas given for the discriminant
in part b) of theorem 1, we obtain a106 ∈ K (or a105 ∈ K if deg F0 = 5). We
choose one of the tenth roots a′

6 ∈ K of this value and take the polynomial
F1(X) = a′

6F0(X) ∈ K[X].

Step 4: Hyperelliptic equation. At this point, it only remains to find the
tenth root of unity ζ such that F = ζF1. Since the curves CF and Cλ2F with
λ ∈ K∗ are K-isomorphic, it suffices to consider only the cases ζ = 1 and ζ = −1,
when −1 /∈ K2. First we check whether CF and C−F are K-isomorphic. If they
are not, then we look if Jac CF and Jac C−F are not K-isogenous. In this case,
by Faltings Theorem, only one of their L-series will agree with the L-series of
A and this will give the right sign for F = ±F1. In fact, it will suffice to find
a prime p in K of good reduction for the curves CF and C−F such that their
reductions mod p have a different number of points.

In the case that CF and CF are not K-isomorphic and Jac CF and Jac C−F

are K-isogenous, we cannot determine the right sign. Anyway, we know that
both jacobians Jac CF and Jac C−F are K(

√−1)-isomorphic to Af , and one of
them is K-isomorphic.
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4 Modular Computations

We apply the method described in the previous section to present the irreducible
principally polarized two-dimensional factors of J0(N)new as jacobians of curves,
for N ≤ 500.

In order to do this, we begin looking for the normalized newforms f =∑
anqn ∈ S2(Γ0(N)) such that the number field Ef = Q({an}) is quadratic.

For each of these newforms, we take an integral basis of the C-vector space gen-
erated by f and its Galois conjugate σf . We also determine a symplectic basis
of H1(Af , Z). If Af is principally polarized, we compute the period matrix with
respect to these bases, using the package on modular symbols written by W.
Stein in Magma.

Next, we check the irreducibility of Af by means of proposition 2. We remark
that all the Af studied are irreducible.

We now apply the method of section 3. We follow the steps described there,
to find the corresponding curves CF : Y 2 = F (X). Since we are working over
Q, we can change the polynomial F (X) in order to obtain an integral equation.
We multiply F (X) by d = t/b, where t ∈ Z is the square of the l.c.m. of the
denominators of the coefficients of F , and b ∈ Z is the g.c.d. of their numera-
tors divided by its maximum square-free factor. It is worth remarking that the
equations obtained have very small coefficients, even before finding the integral
model.

The only case in which we have found a curve CF such that Jac CF and
Jac C−F are Q-isogenous occurs for N = 256, but in fact both curves are already
Q-isomorphic, because the corresponding polynomial F (X) is odd.

We have used three tests to check the correctness of our equations. First, we
have computed the absolute Igusa invariants of the curves CF in two different
ways: algebraically from the coefficients of our equations, and numerically from
the even Thetanullwerte of the period matrix. They have agreed to high accuracy
in all cases. Second, we have compared the local factors of the L-series of Jac CF

and Af for all primes p < 100 not dividing ∆alg(CF ). Finally, we have computed
the odd part of the conductor of CF using the program genus2reduction by
Q. Liu. In all cases, this odd part agreed with the odd part of the square of the
level of the newform f , as it should by [1]. It is worth noting that in almost all
cases our equations are minimal over Z[1/2].

We illustrate our computations with an example. The first level for which
J0(N)new has a proper two-dimensional factor is N = 63. Using Magma we
identify the corresponding normalized newform f :

f = q +
√

3q2 + q4 − 2
√

3q5 + q7 −
√

3q8 − 6q10 + 2
√

3q11 + 2q13 + . . .

An integral basis of the space 〈f, σf〉 is

f1 = q + q4 + q7 − 6q10 + 2q13 + . . . , f2 = q2 − 2q5 − q8 + 2q11 + . . .
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A basis for H1(Af , Z) in terms of modular symbols is given by

γ1 = {− 1
24 , 0} − {− 1

28 , 0} + {− 1
30 , 0} − {− 1

51 , 0} − {− 1
3 , − 2

7},

γ2 = {− 1
24 , 0} − {− 1

28 , 0} + {− 1
39 , 0} − {− 1

57 , 0} − {− 1
6 , − 1

7},

γ3 = {− 1
24 , 0} + {− 1

39 , 0} − {− 1
45 , 0} − {− 1

60 , 0} − {− 1
3 , − 2

7} − { 3
7 , 49},

γ4 = {− 1
36 , 0} − {− 1

49 , 0} + {− 1
51 , 0} − {− 1

54 , 0} + {− 1
57 , 0}

−{− 1
60 , 0} − {− 1

3 , − 2
7} .

Computing the intersection matrix of these paths we see that Af is principally
polarized. We find a symplectic basis for H1(Af , Z), and compute the periods
of f1, f2 with respect to these bases. We obtain as period matrix Ω = (Ω1 | Ω2)
for Af :

Ω1 =
(

0.3590439 . . . + i ∗ 0.6218823 . . . −2.2150442 . . . + i ∗ 1.2788564 . . .
−2.2150442 . . . + i ∗ 3.8365691 . . . 1.0771318 . . . + i ∗ 0.6218823 . . .

)
,

Ω2 =
(−1.4969563 . . . + i ∗ 1.2788564 . . . −1.8560003 . . . − i ∗ 0.6569740 . . .

−3.3529566 . . . + i ∗ 0.6218823 . . . −1.1379124 . . . + i ∗ 3.2146868 . . .

)
.

.

We apply the method described in section 3, to obtain the monic polynomial

F0(x) = x6 − 54x3 − 27.

The coefficient a6 is 1/12, so that F1(x) = 1/12F0(x). The first prime for which
the local factors of CF1 and C−F1 are different is p = 67. Comparing with the
polynomial

x2(x + p/x − ap)(x + p/x −σ ap),

we see that the right sign is −1. We multiply −F1(x) by 62 to obtain an integral
equation. We can finally assert that Af is the jacobian of the curve

y2 = −3x6 + 162x3 + 81.

The Igusa invariants of this curve are

i1 =
23 · 375

3 · 73
, i2 = −3 · 373 · 103

2 · 73
i3 = −5 · 372 · 881

23 · 73
.

We have also computed these Igusa invariants from the even Thetanullwerte
associated to the period matrix Z, obtaining, of course, the same result.

Using Q. Liu’s program, we find a minimal equation for the curve C:

Y 2 = X6 + 54X3 − 27,

which is obtained from our equation through the change x = 3/X, y = 9Y/X3,
which corresponds essentially to a different ordering of the modular forms f1, f2
as basis of 〈f, σf〉.
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5 Tables

We present the equations that we have obtained in the following table. We
have labelled the irreducible principally polarized two-dimensional factors Af of
J0(N)new as SNX . We have ordered the two-dimensional factors of J0(N)new

following the output of the Magma function SortDecomposition. The letter X
denotes the position of Af with respect to this ordering. The third column
indicates when we know that the given equation is minimal over Z[1/2].

Af CF : y2 = F (x), Jac CF � Af minimal?

S23A y2 = x6 − 8x5 + 2x4 + 2x3 − 11x2 + 10x − 7 yes
S29A y2 = x6 − 4x5 − 12x4 + 2x3 + 8x2 + 8x − 7 yes
S31A y2 = x6 − 8x5 + 6x4 + 18x3 − 11x2 − 14x − 3 yes
S63B y2 = −3x6 + 162x3 + 81
S65B y2 = −x6 − 4x5 + 3x4 + 28x3 − 7x2 − 62x + 42 yes
S65C y2 = −15x6 + 36x4 − 30x3 + 72x2 − 39 yes
S67B y2 = x6 + 2x5 + x4 − 2x3 + 2x2 − 4x + 1 yes
S73B y2 = x6 − 4x5 + 2x4 + 6x3 + x2 + 2x + 1 yes
S87A y2 = x6 − 2x4 − 6x3 − 11x2 − 6x − 3 yes
S93A y2 = x6 + 2x4 − 6x3 + 5x2 + 6x + 1 yes
S103A y2 = x6 + 2x4 + 2x3 + 5x2 + 6x + 1 yes
S107A y2 = x6 + 2x5 + 5x4 + 2x3 − 2x2 − 4x − 3 yes
S115B y2 = x6 + 2x4 + 10x3 + 5x2 + 6x + 1 yes
S117B y2 = x6 − 10x3 − 27 yes
S117C y2 = −3x6 − 12x4 − 18x3 − 48x2 − 36x − 27 yes
S125A y2 = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 8x + 1 yes
S125B y2 = 5x6 − 10x5 + 25x4 − 50x3 + 50x2 − 40x + 5 yes
S133A y2 = x6 − 2x5 + 5x4 − 6x3 + 10x2 − 8x + 1 yes
S133B y2 = −3x6 − 22x5 − 35x4 + 50x3 + 74x2 − 100x + 29 yes
S135D y2 = x6 + 6x4 − 10x3 + 9x2 − 30x − 11 yes
S147D y2 = x6 − 4x4 + 2x3 + 8x2 − 12x + 9 yes
S161B y2 = x6 + 6x5 + 17x4 + 22x3 + 26x2 + 12x + 1 yes
S167A y2 = x6 − 4x5 + 2x4 − 2x3 − 3x2 + 2x − 3 yes
S175E y2 = x6 + 2x5 − 3x4 + 6x3 − 14x2 + 8x − 3 yes
S177A y2 = x6 + 2x4 − 6x3 + 5x2 − 6x + 1 yes
S177B y2 = −15x6 − 120x5 − 530x4 − 710x3 − 515x2 − 30x + 45
S188B y2 = x5 − x4 + x3 + x2 − 2x + 1 yes
S189E y2 = x6 − 2x3 − 27 yes
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Af CF : y2 = F (x), Jac CF � Af minimal?

S191A y2 = x6 + 2x4 + 2x3 + 5x2 − 6x + 1 yes
S205D y2 = x6 + 2x4 + 10x3 + 5x2 − 6x + 1 yes
S209B y2 = x6 − 4x5 + 8x4 − 8x3 + 8x2 + 4x + 4 yes
S213B y2 = x6 + 2x4 + 2x3 − 7x2 + 6x − 3 yes
S221C y2 = x6 − 2x5 + x4 + 6x3 + 2x2 + 4x + 1 yes
S224C y2 = −2x6 − 8x5 − 34x4 − 48x3 − 118x2 + 56x + 154 yes
S224D y2 = 2x6 − 8x5 + 34x4 − 48x3 + 118x2 + 56x − 154 yes
S243C y2 = x6 + 6x3 − 27 yes
S250D y2 = 20 x6 − 140 x5 + 325 x4 + 1050 x3 + 425 x2 + 160 x + 80
S256E y2 = 2 x5 − 128 x yes
S261A y2 = x6 − 6x4 + 10x3 + 21x2 − 30x + 9 yes
S261B y2 = −3x6 + 18x4 + 30x3 − 63x2 − 90x − 27 yes
S261D y2 = −3x6 + 6x4 − 18x3 + 33x2 − 18x + 9 yes
S262C y2 = −8x5 + 56x4 − 82x3 − 312x2 − 264x − 64 yes
S266B y2 = 8 x6 + 16 x5 + 13 x4 + 6 x3 − 19 x2 − 8 x − 16 yes
S268C y2 = x6 − 2x5 + x4 − 4x3 + 2x2 + 4x + 1 yes
S275G y2 = −3x6 − 2x5 + x4 − 14x3 + 2x2 − 8x + 1 yes
S279A y2 = −3 x6 − 6 x4 − 18 x3 − 15 x2 + 18 x − 3 yes
S279B y2 = −3 x6 + 6 x5 − 3 x4 − 6 x3 + 18 x2 − 12 x + 9 yes
S287A y2 = x6 + 2x5 − 3x4 − 6x3 − 10x2 − 4x − 3 yes
S292A y2 = −x6 − 2x5 − 4x4 − 4x3 − 3x2 − 2x + 1 yes
S297E y2 = x6 − 12 x4 − 8 x3 + 12 x2 − 12 x + 4 yes
S297F y2 = −3 x6 + 36 x4 − 24 x3 − 36 x2 − 36 x − 12 yes
S299A y2 = −3x6 − 10x5 − 7x4 + 6x3 + 6x2 − 4x + 1 yes
S325H y2 = −75 x6 + 180 x4 + 150 x3 + 360 x2 − 195 yes
S335B y2 = x6 − 4x5 − 48x2 − 20x − 4 yes
S345G y2 = x6 − 12 x5 + 32 x4 + 24 x3 + 8 x2 − 12 x + 4 yes
S351A y2 = x6 − 6x4 + 18x3 + 9x2 − 18x + 5 yes
S351C y2 = −3 x6 + 18 x4 + 54 x3 − 27 x2 − 54 x − 15 yes
S351D y2 = 21 x6 − 210 x5 + 525 x4 − 602 x3 + 714 x2 + 336 x + 665
S357E y2 = x6 + 8x4 − 8x3 + 20x2 − 12x + 12 yes
S375C y2 = 105 x6 + 240 x5 + 550 x4 + 450 x3 + 325 x2 + 90 x − 155 yes
S376A y2 = −x5 − x4 + 3 x3 + 3 x2 − 4 x + 1 yes
S376B y2 = x5 − x3 + 2x2 − 2x + 1 yes
S380D y2 = x5 − 7x3 − 4x2 + 5x + 5 yes
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Af CF : y2 = F (x), Jac CF � Af minimal?

S387F y2 = −12x6 + 162x3 + 324
S389B y2 = x6 + 10x5 + 23x4 − 20x3 − 45x2 + 46x − 11 yes
S391A y2 = x6 + 10x4 − 6x3 − 11x2 + 18x − 7 yes
S424A y2 = x6 − 2x5 + 6x4 − 8x3 + 10x2 − 8x + 5 yes
S440E y2 = x5 + 2x3 − 11x2 − 8x − 24 yes
S440G y2 = x5 − 2x3 − 7x2 − 8x + 8 yes
S441I y2 = −3 x6 + 12 x4 + 6 x3 − 24 x2 − 36 x − 27 yes
S464I y2 = −x6 − 2x5 − 7x4 − 6x3 − 13x2 − 4x − 8 yes
S476B y2 = x5 + 2x4 + 3x3 + 6x2 + 4x + 1 yes
S476D y2 = x5 − 2x4 + 3x3 − 6x2 − 7 yes
S483C y2 = x6 + 12 x5 + 26 x4 − 34 x3 − 67 x2 + 90 x − 27 yes
S488A y2 = −3x6 + 18x5 − 27x4 − 12x3 − 27x2 − 36x − 24 yes
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