CONJUNTOS Y NÚMEROS

(7-11-2022)

Grado en Matemáticas Curso 2022–23

Hoja $\mathbf{n}^{\mathbf{o}} 6_o$

Números

1. Sea $\widehat{\mathbb{N}} = \mathbb{N} \cup \{0\}$. Se define en $\widehat{\mathbb{N}} \times \widehat{\mathbb{N}}$ la relación

$$(n,m) \sim (r,s) \iff n+s=m+r.$$

a) Demuestra que es una relación de equivalencia.

El conjunto cociente $\widehat{\mathbb{N}} \times \widehat{\mathbb{N}} / \sim$ lo denotamos por \mathbb{Z} , en el definimos las operaciones:

$$[(n,m)] + [(r,s)] = [(n+r,m+s)],$$

$$[(n,m)] \cdot [(r,s)] = [(nr+ms,ns+mr)].$$

- b) Demuestra que las anteriores operaciones están bien definidas.
- c) Demuestra que $(\mathbb{Z}, +, \cdot)$ es un anillo conmutativo con unidad.
- **2.** En $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ se define la relación

$$(a,b) \sim (c,d) \iff ad = bc.$$

a) Demuestra que es una relación de equivalencia.

El conjunto cociente $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})/\sim$ lo denotamos por \mathbb{Q} , en el definimos las operaciones:

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)],$$

 $[(a,b)] \cdot [(c,d)] = [(ac,bd)].$

- b) Demuestra que las anteriores operaciones están bien definidas.
- c) Demuestra que $(\mathbb{Q}, +, \cdot)$ es un cuerpo.
- **3.** Sean α y β cortaduras de Dedekind (i.e. $\alpha, \beta \in \mathbb{R}_D$). Se define la relación

$$\alpha \leq \beta \iff \alpha \subseteq \beta$$
.

Se nota por $\alpha \prec \beta$ si $\alpha \leq \beta$ y α $e\beta$.

- a) (\mathbb{R}_D, \preceq) es un conjunto ordenado. Es decir, \preceq es una relación de orden en \mathbb{R}_D .
- **b)** Demostrar que si $\alpha, \beta \in \mathbb{R}_D$, entonces $\alpha = \beta, \alpha \prec \beta$ o $\beta \prec \alpha$.
- c) (\mathbb{R}_D, \preceq) es un conjunto totalmente ordenado.
- **4.** Sea $A \subset \mathbb{R}$ un subconjunto acotado superiormente (i.e. $\exists M \in \mathbb{R}_D$ tal que $a \leq M$ para todo $a \in A$). Demostrar que A tiene un supremo. (Sugerencia: Demostrar que $\gamma = \bigcup_{\alpha \in A} \alpha \in \mathbb{R}_D$ es el supremo)
- **5.** Dado $r \in \mathbb{Q}$ se define la cortadura asociada a r como:

$$r^* := \{ q \in \mathbb{Q} : q < r \}.$$

Demostrar que $r^* \in \mathbb{R}_D$.

6. Sean $\alpha, \beta \in \mathbb{R}_D$. Se define la suma de α y β como

$$\alpha + \beta := \{ p + q : p \in \alpha, q \in \beta \}.$$

Demostrar

a) $\alpha + \beta \in \mathbb{R}_D$.

b)
$$\alpha + \beta = \beta + \alpha$$
.

c)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
, para $\gamma \in \mathbb{R}_D$.

- d) $\alpha + 0^* = \alpha$.
- e) Existe una única cortadura $\widehat{\alpha} \in \mathbb{R}_D$ tal que $\alpha + \widehat{\alpha} = 0^*$. Denotaremos $-\alpha := \widehat{\alpha}$.

Conclusión: $(\mathbb{R}_D, +)$ es un grupo abeliano.

- 7. Sea $\alpha \in \mathbb{R}_D$. Demostrar que si $\alpha \leq 0^*$ entonces $0^* \leq -\alpha$.
- **8.** Sean $\alpha, \beta \in \mathbb{R}_D$. Si $0^* \leq \alpha$ y $0^* \leq \beta$, se define el producto de α y β como

$$\alpha \cdot \beta := \{ p + q \, : \, p \in \alpha, q \in \beta \}.$$

Si $0^* \leq \alpha$ y $\beta \leq 0^*$ como $\alpha \cdot \beta := -(\alpha \cdot (-\beta))$.

Si $\alpha \leq 0^*$ y $0^* \leq \beta$ como $\alpha \cdot \beta := -((-\alpha) \cdot (\beta))$.

Si
$$\alpha \leq 0^*$$
 y $\beta \leq 0^*$ como $\alpha \cdot \beta := (-\alpha) \cdot (-\beta)$.

Demostrar:

- a) $\alpha \cdot \beta \in \mathbb{R}_D$.
- **b)** $\alpha \cdot \beta = \beta \cdot \alpha$.
- c) $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$, para $\gamma \in \mathbb{R}_D$.
- **d)** $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$, para $\gamma \in \mathbb{R}_D$.
- e) $\alpha \cdot 0^* = 0^*$.
- f) $\alpha \cdot \beta = 0^* \iff \alpha = 0^* \text{ o } \beta = 0^*.$
- g) $\alpha \cdot 1^* = \alpha$.
- h) Si $\alpha \neq 0^*$, existe una única cortadura $\widetilde{\alpha} \in \mathbb{R}_D$ tal que $\alpha \cdot \widetilde{\alpha} = 1^*$.

<u>Conclusión</u>: $(\mathbb{R}_D \setminus \{0^*\}, \cdot)$ es un grupo abeliano.

<u>Conclusión</u>: $(\mathbb{R}_D, +, \cdot)$ es un cuerpo totalmente ordenado y completo.

- **9.** Sean $p, q \in \mathbb{Q}$. Demostrar:
- a) $(p+q)^* = p^* + q^*$.
- **b)** $(p \cdot q)^* = p^* \cdot q^*$.
- c) $p^* \leq q^* \iff p \leq q$.

Conclusión: \mathbb{R}_D extiende \mathbb{Q} .

10. Sean $\alpha, \beta \in \mathbb{R}_D$ tales que $\alpha \leq \beta$. Entonces existe $q \in \mathbb{Q}$ tal que $\alpha \prec q^* \prec \beta$. Conclusión: \mathbb{Q} es denso en \mathbb{R}_D .

11. Sea \mathcal{C} el conjunto de sucesiones $(x_n)_{n\in\mathbb{N}}$ de Cauchy con $x_n\in\mathbb{Q}$ y $\mathcal{C}_0\subset\mathcal{C}$ el subconjunto de aquellas sucesiones que convergen a 0. Definimos la relación en \mathcal{C} siguiente:

$$(x_n)_{n\in\mathbb{N}} \sim (y_n)_{n\in\mathbb{N}} \iff (x_n - y_n)_{n\in\mathbb{N}} \in \mathcal{C}_0.$$

a) Demuestra que es una relación de equivalencia.

El conjunto cociente \mathcal{C}/\sim lo denotamos por \mathbb{R}_C en el definimos las operaciones:

$$[(x_n)_{n \in \mathbb{N}}] + [(y_n)_{n \in \mathbb{N}}] = [(x_n + y_n)_{n \in \mathbb{N}}],$$

$$[(x_n)_{n \in \mathbb{N}}] \cdot [(y_n)_{n \in \mathbb{N}}] = [(x_n \cdot y_n)_{n \in \mathbb{N}}],$$

- b) Demuestra que las anteriores operaciones están bien definidas.
- c) Demuestra que $(\mathbb{R}_C, +, \cdot)$ es un cuerpo.
- 12. Definimos

$$\mathbb{R}_W = \left\{ a_0 + \sum_{n=1}^{\infty} a_n 10^{-n} : a_0 \in \mathbb{Z}, \, a_n \in \{0, \dots, 9\}, \, n \in \mathbb{N} \right\}.$$

Los números racionales \mathbb{Q} se pueden ver como un subcuerpo de \mathbb{R}_W , son aquellos en los que existen un número natural m y un entero positivo q tales que $a_i = a_{i+q}$, para todo $i \geq m$.

271, 12349324.

Determinar la expresión racional de los siguientes números de
$$\mathbb{R}_W$$
:

 $43,23\widehat{91},$

13. En \mathbb{R}^2 definimos las operaciones

$$(a,b) + (c,d) = (a+c,b+d),$$

 $(a,b) \cdot (c,d) = (ac-bd,ad+bc).$

- a) Demuestra que $(\mathbb{R}^2, +, \cdot)$ es un cuerpo.
- b) Calcula (x, y) satisfaciendo cada una de las siguiente ecuaciones:

 $4.\hat{9}.$

$$(x,y)^{2} + (-1,0) = (0,0),$$

$$(x,y)^{2} + (5,0) = (0,0),$$

$$(x,y)^{2} + (-5,0) = (0,0),$$

$$(x,y)^{2} + (x,y) + (-1,0) = (0,0),$$

$$(x,y)^{3} + (-1,0) = (0,0).$$