TEORÍA DE NÚMEROS

Hoja de Problemas n^o 3

(1) ¿Cuáles de los siguientes números complejos son números algebraicos?:

$$\frac{355}{133}, e^{\frac{2\pi i}{23}}, \sqrt{17} + \sqrt{19}, \frac{1 + \sqrt{17}}{2\sqrt{-19}}, \sqrt{1 + \sqrt{2}} + \sqrt{1 - \sqrt{2}}, \pi^k \text{ con } k \in \mathbb{Q}.$$

- (2) Sean $\alpha_1, \ldots, \alpha_n$ enteros algebraicos de $\mathbb{Q}(\theta)$ que son \mathbb{Q} -linealmente independientes. Sea $n = [\mathbb{Q}(\theta) : \mathbb{Q}]$ y sea Δ el discriminante de $\mathbb{Q}(\theta)$. Demostrar que si $\Delta[\alpha_1, \ldots, \alpha_n] = \Delta$, entonces $\{\alpha_1, \ldots, \alpha_n\}$ es una base entera de $\mathbb{Q}(\theta)$.
- (3) (a) Si $[K : \mathbb{Q}] = n$ y $\alpha \in \mathbb{Q}$, demostrar

$$N_K(\alpha) = \alpha^n$$
 y $Tr_K(\alpha) = n \alpha$.

- (b) Dar un ejemplo que demuestre que para un α fijo, $N_K(\alpha)$ y $\mathrm{Tr}_K(\alpha)$ dependenden de K, y que por tanto no se puede hablar de *norma* de α ni de *traza* de α sin hacer referencia a una extensión $\mathbb{Q} \subset K$.
- (4) Sea $\zeta = e^{2\pi i/3}$.
 - (a) Demostrar que $\mathbb{Q}(\zeta) = \{a + b\zeta : a, b \in \mathbb{Q}\}$ y que $\mathbb{Z}[\zeta] = \{a + b\zeta : a, b \in \mathbb{Z}\}$
 - (b) Demostrar que si N : $\mathbb{Z}[\zeta] \to \mathbb{Z}$ es la norma en $\mathbb{Q}(\zeta)$ restringida a $\mathbb{Z}[\zeta]$, entonces $N(a+b\zeta) = a^2 ab + b^2$. Probar que si $a + b\zeta = u + vi$ con $u, v \in \mathbb{R}$ (todo elemento de $\mathbb{Z}[\zeta]$ se puede escribir así de manera única) entonces $N(a + b\zeta) = u^2 + v^2$.
 - (c) Demostrar que si α divide a β en $\mathbb{Z}[\zeta]$, entonces $N(\alpha)$ divide a $N(\beta)$ en \mathbb{Z} .
 - (d) Sea $\alpha \in \mathbb{Z}[\zeta]$. Probar que α es una unidad si y sólo si $N(\alpha) = 1$. Encontrar todas las unidades de $\mathbb{Z}[\zeta]$. (Son sólo 6).
 - (e) Demostrar que $1-\zeta$ es irreducible en $\mathbb{Z}[\zeta]$ y que $3=u(1-\zeta)^2$ para una cierta unidad u.
- (5) Encontrar bases enteras y los discriminantes de los siguientes cuerpos:

$$\mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{-7}), \mathbb{Q}(\sqrt{11}), \mathbb{Q}(\sqrt{-11}), \mathbb{Q}(\sqrt{6}), \mathbb{Q}(\sqrt{-6})$$

(6) Sea $K = \mathbb{Q}(\zeta)$ donde $\zeta = e^{2\pi i/5}$. Calcular $N_K(\alpha)$ y $Tr_K(\alpha)$ para los siguientes valores de α :

$$\zeta^2, \zeta+\zeta^2, 1+\zeta+\zeta^2+\zeta^3+\zeta^4 \, .$$

- (7) Sea $K = \mathbb{Q}(\zeta)$ donde $\zeta = e^{2\pi i/5}$.
 - (a) Demostrar que si $\alpha \in \mathbb{Z}[\zeta]$, entonces $N_K(\alpha)$ es de la forma $(a^2 5b^2)/4$ con $a, b \in \mathbb{Z}$.
 - (b) Probar que $\mathbb{Z}[\zeta]$ tiene un número infinito de unidades.
 - (c) Demostrar que para $a, b \in \mathbb{Q}, a \neq -b$, se tiene $N_K(a+b\zeta) = (a^5 + b^5)/(a+b)$.
 - (d) Calcular $N_K(\alpha)$ para $\alpha = \zeta + 2, \zeta 2, \zeta + 3, \zeta 3, \zeta + 4$.
 - (e) Demostrar que $\zeta + 2, \zeta 2, \zeta + 3$ son irreducibles en $\mathbb{Z}[\zeta]$.
 - (f) Factorizar 11, 31 y 61 en $\mathbb{Z}[\zeta]$.
 - (g) Probar que todos los divisores propios de $\zeta + 4$ tienen norma 5 ó 41, y, sabiendo que $\zeta 1$ es un factor de $\zeta + 4$, encontrar otro.

- (8) Encontrar todas las soluciones enteras de las ecuaciones $y^2 + 4 = x^3$ (puede convenir distinguir el caso de y par del de y impar), $y^2 + 19 = x^3$ e $y^2 + 3 = x^3$. (Ayuda: Factorizar).
- (9) Ramanujan observó que 1729 es el menor entero positivo que se puede escribir como suma de dos cubos de dos maneras distintas. Demostrar que, efectivamente, la ecuación $x^3 + y^3 = 1729$ tiene dos soluciones distintas en enteros positivos (excluyendo intercambiar x e y). (Ayuda: factorizar ambos lados.) La misma idea permitiría, quizá con ayuda de un ordenador, comprobar caso a caso que ningún n < 1729 tiene esta propiedad. O sin utilizar el ordenador, elegir un n tal que 100 < n < 1729 y tal que n sea suma de dos cubos, y demostrar que la ecuación $x^3 + y^3 = n$ tiene una única solución con x e y enteros positivos (excluyendo intercambiar x e y).
- (10) Sea $K = \mathbb{Q}(\zeta)$ donde $\zeta = e^{2\pi i/5}$. Si α es un primo en $\mathbb{Z}[\zeta]$, probar que el conjunto de enteros racionales que son divisibles por α es precisamente un ideal (q) de $\mathbb{Z}[\zeta]$ para un primo racional q. Esto es, que $(\alpha \mathbb{Z}[\zeta]) \cap (\mathbb{Z}) = q\mathbb{Z}$ para algún primo racional q. (Ayuda: Demostrarlo en general).
- (11) Sea K un cuerpo de números con anillo de enteros \mathcal{O} . Sea $x \in \mathcal{O}$ un elemento primo, demostrar que $N_K(x) = \pm q^r$, para un primo racional q y un $r \leq [K : \mathbb{Q}]$.
- (12) (a) Sea \mathbb{Q}_2 el conjunto formado por lo números racionales a/b con $a, b \in \mathbb{Z}$ tales que b es impar. Probar que \mathbb{Q}_2 es un dominio en el que los únicos irreducibles son 2 y sus asociados.
 - (b) Generalizar el resultado anterior al anillo \mathbb{Q}_{Σ} (donde Σ es un conjunto finito de números enteros primos) formado por racionales a/b con $a,b\in\mathbb{Z}$ tales que b es primo con todos los elementos de Σ .
- (13) Sea $\zeta_p = e^{2\pi i/p}$, p primo impar. Demostrar que $\mathbb{Z}[\zeta_p]$ contiene a \sqrt{p} si $p \equiv 1 \pmod{4}$, y contiene a $\sqrt{-p}$ si $p \equiv 3 \pmod{4}$. (Ayuda: ¿Cúal es el discriminante de $\mathbb{Q}(\zeta_p)$?) Expresar $\sqrt{-3}$ y $\sqrt{5}$ como polinomios en el correspondiente ζ_p .
- (14) Utilizar las siguientes igualdades para demostrar que los anillos de enteros de los correspondientes cuerpos cuadráticos no son D.F.U.:
 - (a) $\mathbb{Q}(\sqrt{-5})$: $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$
 - **(b)** $\mathbb{Q}(\sqrt{-6})$: $6 = 2 \cdot 3 = \sqrt{-6}\sqrt{-6}$,
 - (c) $\mathbb{Q}(\sqrt{-10})$: $14 = 2 \cdot 7 = (2 + \sqrt{-10})(2 \sqrt{-10})$
 - (d) $\mathbb{Q}(\sqrt{-13})$: $14 = 2 \cdot 7 = (1 + \sqrt{-13})(1 \sqrt{-13}),$
 - (e) $\mathbb{Q}(\sqrt{-14})$: $15 = 3 \cdot 5 = (1 + \sqrt{-14})(1 \sqrt{-14}),$
 - (f) $\mathbb{Q}(\sqrt{-15})$: $4 = 2 \cdot 2 = \left(\frac{1+\sqrt{-15}}{2}\right) \left(\frac{1-\sqrt{-15}}{2}\right)$,
 - (g) $\mathbb{Q}(\sqrt{-17})$: $18 = 2 \cdot 3 \cdot 3 = (1 + \sqrt{-17})(1 \sqrt{-17}),$
 - (h) $\mathbb{Q}(\sqrt{-21})$: $22 = 2 \cdot 11 = (1 + \sqrt{-21})(1 \sqrt{-21})$,
 - (i) $\mathbb{Q}(\sqrt{-22})$: $26 = 2 \cdot 13 = (2 + \sqrt{-22})(2 \sqrt{-22})$,
 - (j) $\mathbb{Q}(\sqrt{-23})$: $6 = 2 \cdot 3 = \left(\frac{1+\sqrt{-23}}{2}\right) \left(\frac{1-\sqrt{-23}}{2}\right)$,
 - (k) $\mathbb{Q}(\sqrt{-26})$: $27 = 3 \cdot 3 \cdot 3 = (1 + \sqrt{-26})(1 \sqrt{-26})$,
 - (1) $\mathbb{Q}(\sqrt{-29})$: $30 = 2 \cdot 3 \cdot 5 = (1 + \sqrt{-29})(1 \sqrt{-29})$
 - (m) $\mathbb{Q}(\sqrt{-30})$: $34 = 2 \cdot 17 = (2 + \sqrt{-30})(2 \sqrt{-30})$,
 - (n) $\mathbb{Q}(\sqrt{10})$: $6 = 2 \cdot 3 = (4 + \sqrt{10})(4 \sqrt{10}),$
 - $(\tilde{\mathbf{n}}) \ \mathbb{Q}(\sqrt{15})$: $10 = 2 \cdot 5 = (5 + \sqrt{15})(5 \sqrt{15}),$
 - (o) $\mathbb{Q}(\sqrt{26})$: $10 = 2 \cdot 5 = (6 + \sqrt{26})(6 \sqrt{26})$
 - (p) $\mathbb{Q}(\sqrt{30})$: $6 = 2 \cdot 3 = (6 + \sqrt{30})(6 \sqrt{30}).$

(15) En $\mathbb{Z}[\sqrt{-5}]$ definimos los ideales

$$\begin{array}{lll} \mathfrak{p} & = & <2, 1+\sqrt{-5}>, \\ \mathfrak{q} & = & <3, 1+\sqrt{-5}>, \end{array}$$

$$\mathfrak{r} = \langle 3, 1 - \sqrt{-5} \rangle$$
.

- (a) Demostrar que son ideales maximales, por lo tanto primos.
- (b) Mostrar que

$$\mathfrak{p}^2 = <2>,$$

$$\mathfrak{q} \cdot \mathfrak{r} = \langle 3 \rangle,$$

$$\mathfrak{p} \cdot \mathfrak{q} = \langle 1 + \sqrt{-5} \rangle,$$

$$\mathfrak{p} \cdot \mathfrak{r} = \langle 1 - \sqrt{-5} \rangle$$
.

(c) Demostrar que las factorizaciones de 6:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}),$$

provienen de diferentes agrupamientos de la factorización en ideales primos:

$$<6>=\mathfrak{p}^2\mathfrak{q}\cdot\mathfrak{r}.$$

- (d) Calcular las normas de los ideales $\mathfrak{p}, \mathfrak{q}$ y \mathfrak{r} .
- (e) Demostrar que $\mathfrak{p}, \mathfrak{q}$ y \mathfrak{r} no son principales.
- (f) Demostrar que los ideales < 2 > y < 3 > están generados por elementos irreducibles pero que los ideales no son primos.
- (16) Encontrar todos los ideales de $\mathbb{Z}[\sqrt{-5}]$ que contienen el elemento 6.
- (17) Encontrar todos los ideales de $\mathbb{Z}[\sqrt{2}]$ con norma 18.
- (18) En $\mathbb{Z}[\sqrt{-29}]$ tenemos

$$30 = 2 \cdot 3 \cdot 5 = (1 + \sqrt{-29})(1 - \sqrt{-29}).$$

(a) Demostrar que

$$< 30 > \subseteq \mathfrak{p} := < 2, 1 + \sqrt{-29} >$$

y que p es un ideal primo de norma 2.

- (b) Ver que $1 \sqrt{-29} \in \mathfrak{p}$ y deducir que $< 30 > \subseteq \mathfrak{p}^2$.
- (c) Calcular ideales primos q, q', r, r' con normas 3 y 5 tales que

$$<30>\subseteq \mathfrak{q}\cdot\mathfrak{q}'$$
 y $<30>\subseteq \mathfrak{r}\cdot\mathfrak{r}'$.

(d) Deducir que $\mathfrak{p}^2 \cdot \mathfrak{q} \cdot \mathfrak{q}' \cdot \mathfrak{r} \cdot \mathfrak{r}' \mid \langle 30 \rangle$ y calculando normas, o de otro modo, demostrar que

$$< 30 > = \mathfrak{p}^2 \cdot \mathfrak{q} \cdot \mathfrak{q}' \cdot \mathfrak{r} \cdot \mathfrak{r}'.$$

(e) Comentar como está esto relacionado con las dos factorizaciones:

$$<30> = <2> <3> <5>,$$

 $<30> = <1+\sqrt{-29}> <1+\sqrt{-29}> .$

3

(f) Calcular todos los ideales de $\mathbb{Z}[\sqrt{-29}]$ conteniendo al elemento 30.

(19) En $\mathbb{Z}[\sqrt{-5}]$ definimos, como en el ejercicio (1) los ideales

$$\begin{array}{lll} \mathfrak{p} & = & <2, 1+\sqrt{-5}>, \\ \mathfrak{q} & = & <3, 1+\sqrt{-5}>, \\ \mathfrak{r} & = & <3, 1-\sqrt{-5}>. \end{array}$$

Sea \mathcal{H} el grupo de clase. Demostrar que en \mathcal{H} se tiene:

$$[\mathfrak{p}]^2 = [\mathcal{O}], \quad [\mathfrak{p}][\mathfrak{q}] = [\mathcal{O}], \quad [\mathfrak{p}][\mathfrak{r}] = [\mathcal{O}],$$

y deducir que $\mathfrak{p}, \mathfrak{q}$ y \mathfrak{r} son equivalentes. Demostrar también que $\mathfrak{p}, \mathfrak{q}$ y \mathfrak{r} son equivalentes haciendo los cálculos explicitos.

- (20) En $\mathbb{Z}[\sqrt{-6}]$:
 - (a) Demostrar que todo ideal es equivalente a uno de norma menor o igual que 3.
 - (b) Comprobar que $<2>=<2, \sqrt{-6}>^2, <3>=<3, \sqrt{-6}>^2$ y concluir que los únicos ideales de normas 2 y 3 son $<2, \sqrt{-6}>$ y $<3, \sqrt{-6}>$ respectivamente.
 - (c) Deducir de lo anterior que $h \le 3$ y utilizar que $< 2 > = < 2, \sqrt{-6} >^2$, o cualquier otro modo, para probar que h = 2.
 - (d) Encontrar ideales principales p y q tales que

$$\mathfrak{p} < 2, \sqrt{-6} > = \mathfrak{q} < 3, \sqrt{-6} > .$$

- (21) Para cada uno de los cuerpos siguientes, factorizar los ideales que se indican en sus respectivos anillos de enteros:
 - (a) $\mathbb{Q}(\sqrt{3}): <2>, <3>, <5>, <10>, <30>.$
 - **(b)** $\mathbb{Q}(\sqrt{5}): <2>, <3>, <5>, <12>, <25>.$
 - (c) $\mathbb{Q}(e^{2\pi i/5}): <2>, <5>, <20>, <50>.$
- (22) Encontrar la estructura del grupo de clase para cada uno de los cuerpos cuadráticos $\mathbb{Q}(\sqrt{d})$ con d libre de cuadrados y -30 < d < 30. La Tabla siguiente indica los valores de h (donde h^+ es el número de clase de $\mathbb{Q}(\sqrt{d})$ y h^- el de $\mathbb{Q}(\sqrt{-d})$).

d	h^+	h^-	d	h^+	h^-
1	_	1	14	1	4
2	1	1	15	2	2
3	1	1	17	1	4
5	1	2	19	1	1
6	1	2	21	1	4
7	1	1	22	1	2
10	2	2	23	1	3
11	1	1	26	2	6
13	1	2	29	1	6