Roger Oyono

University of French Polynesia, Tahiti

Lecture in Cryptography for Master class
Madrid, April 2008

u]
‘]
1
n
it

PLN G4

Two main problems on which public key cryptography is based:
@ integer factorisation (in RSA).

@ DLP (ElGamal Cryptosystem, Diffie-Hellman key exchange):

Let G be a cyclic finite abelian group and g € G be a generator of
G. The discrete logarithm problem (DLP) in G is the following:

Given an element h € G, find the smallest positive integer x such
that

h = [x]g (additive group) / h=g* (multiplicative group) .

We will denote such an x with DLg(h).

A

As we will see later, a cryptographically suitable group G must satisfy
the following conditions:

@ representation is easy and compact.
@ fast arithmetic.

@ DLP is computationally hard.

@ group order can be computed efficiently.

@ The computational Diffie-Hellman Problem (CDHP) is the
problem:

Given g,hy = [x]g and hy = [y]g, compute [xy]g.
@ The resolution of the DLP implies the resolution of the CDHP.
@ The decisional Diffie-Hellman Problem (CDHP) is the problem:
Given g, hy =[x]g, hy =[y]g and h, =[z]g, decide if h, = [xy]g.

@ There are groups G for which DDH is easier than CDLP or DLP,
but we do not know how to answer this question in general.

@ Efficient scalar multiplication

@ Solving the DLP in generic groups
9 Pohlig-Hellman
@ Shanks’ Baby step - Giant step
9 Pollard rho

@ Cryptographic protocols based on the DLP
9 Key exchange
@ Encryption
9 Signature

@ Security: what is a cryptographically secure group?

@ Subexponential algorithms for the DLP in finite (prime) fields

9 Generalities

@ Smooth numbers, factor base and subexponentiality
@ Adleman’s algorithm

@ Elliptic curves

@ Generalities

@ Why interesting?
@ Group Law

@ DLP on "special elliptic curves”

@ Hyper- and Non-hyperelliptic curves

@ Generalization: Abelian varieties and Jacobian varieties
@ Generalities
@ Why interesting?

@ Group law on Hyperelliptic Jacobians (of small genus)
9 Index calculus

@ Group law on non-hyperelliptic Jacobians (of small genus)
v
=] 5 = = E DaAr
S Roger Oyono | The DLP and its application in Cryptography

Algorithm (binary left to right (1))
IN: PeGetneN

n=(n_z...ng),n_3 =1.
OUT: [n]P €G.
OR—P
Q for i=1—2to 0do
O R [2]R
@ if nj=1then R~ R®P
Q@ i—i—1
Q retun R

cost: O(logn) doublings /additions in the group G.

The above algorithm is based on the binary expansion of the scalar n:

[(n|_1 500 no)g]P = [2]([(n|_1 000G nl)z]P)ea [no]P

Example: 45 = (101101),

P

2P

2(2P) @ P

2(2(2P)@P)@P
2(2(2(2P)®P) @ P)
2(2(2(2(2P)@P)@P)) &P = [45]P

A generic group is a group where we can only:
@ Represent group elements (uniquely)

@ Apply the group operation to a pair of elements to obtain a new
element

The representation of the group elements gives us no information on
the structure of the group.

The group operation may be done using an oracle.

Most groups are not generic groups, but we can look at them as
generic groups if we "forget” the extra information...

Algorithms for solving the DLP for generic groups give us an upper
bound on how hard things are!

o 5 = = E DaAr

In generic groups, we have three methods to compute DLg(h):

@ Baby step - Giant step (Shanks)
@ Pollard p

@ Pollard kangaroo

group order

and one more method to take advantage of the decomposition of the
@ Pohlig-Hellman

Idea: Non trivial subgroups can make the DLP easier!

Suppose the additive cyclic group G = (g) has order

N =pS -p32-...-pg*
If we know DLy (h) modulo p{ for every i, then we can compute
DLg(h) via the Chinese remainder theorem.

From the group order, we have:

GC>~Gy XGy X -+ X Gy
with

G ~Z/pMZ

We can restrict the DLP from G to G;:
Define g; = [;’H gand h; = [;Nr,] h.

We can compute DLy, (h;) in a group of order pi‘”i (instead of N).

o

We have
oty Ple([E]m [k o)
000 o (30 [Howm "

Pi

and g; has order p¥', so

DLg(h) = DLg (hi) mod pf .

Assume now that G = (g) ~ Z/p®Z and h € G. For DLg(h) = x, write

X = Xo+X1p+Xop2 + ... +Xq_1p**
with x; € [0,p —1]z.

(mod p°)
Let g’ = [p“] g, then g’ has order p and the equality [x]g = h
becomes:

[xolg' = [x]g' = [p""']h
Xo can be find by computing DLy ([p®*]h) in (g’) (a subgroup of
order p). We also compute x; via a DLP in (g’):

[xalg" = p*~?([—Xolg +h)

We iterate this approach to compute x5, Xs,...,Xq—1 and thus x.

.
=} 5 = = E DaAr

Consider a finite abelian group G of order
#G = 2%3215147511%1013
#G is a 160 bits number ...

Using Pohlig-Hellman with a exhaustive search for the discrete log on

the (sub)groups of prime order, we can solve the DLP in less than
3000 group operations.

That's less than the cost of 12.5 scalar multiplications!

Let G = (g), and n a good upper bound of #G. Let u ~ y/n.
Considering the u-adic expansion of x = DL4(h)

X = Xo + UXg, with x; € [0,u—1],
we get

[x]lg =h <= [xi]([u]lg) = h—[xo]g-
To solve the DLP in G:

@ We construct the list

S={h,h—J[g],h—[2]g,...,h—[u—1]g}

(Baby step)
@ We compute succesively the values [x;]([u]g) for x; =0,1,...

and stop when such an element belongs to S (Giant step).
o = = = = 9ac
S Roger Oyono | The DLP and its application in Cryptography

@ We have u Baby steps, each taking 1 group operation.
@ Computing [u]g takes O(logu) group operations.

@ We have u Giant steps, each taking 1 group operation.
@ The total cost is u+ u -+ O(logu), which is O(y/n).

@ The memory requirements is also O(y/n).

Let G be a finite group of order N (in practice G = (g)).

@ A random map is a function F : G — G such that the image of
X € G is choosen (uniformly) at random in G.

@ A random walk in G is a sequence of elements of G, starting at
X0, such that x;+1 = F(X;). The sequence Xg,X1,Xa, ... iS
eventually periodic (G is finite). We are interested in the value of i
for which the first repetition occurs.

@ Claim: The average time for the first repetition is \/n/zx/ﬁ.

@ Proof: Starting from Xg, choose the image of x; at random the first
time you see X;. The first repetition occurs at the first time when
your random choice is an element that was chosen at a previous
step. Use the Birthday Paradox.

QR

prime order N.

Once again, we want to compute DLg(h) for h € G = (g), a group of
If we define

F(x) = [ox]g + [Bx]h,

relation of the form

and X = [0o]g + [Bo]h for randomly choosen 0y, Bx, 0o and Bo, then
the the first repetition (the point where we close the loop) gives us a

[ai]g + [Bi]h = [oj]g + [B;]h

We group the g’s and h’s together, and we get:

[Bi — Bj]h = [oj —axi]g.

With a little bit of luck, gcd(N, 3 — 3;) = 1, and we have

DLg(h) = (0j —a;)/(Bi —B) (mod N).
The expected time for the algorithm is O(v/N).
But in this form, the algorithm has memory O(v/N)...

Although, it is possible to reduce the memory complexity to O(1) using

distinguished points and pseudo-Random walks (Floyd’s method for
cycles detection).

o P S = z wac

@ Historically, the most important goal of the cryptography was to
secure private communication (Encryption).

@ Nowadays, there are other goals
9 authentification

9 non-repudiation
9 integrity

The discover of public key cryptography provides methods to realize
the above goals:

@ asymmetric encryption

@ Signature

@ Key exchange (for session key in symmetric encryptions)
@ electronic voting, etc ...

u]
‘]
I
i

A

Let G = (g) be a finite abelian cyclic group of order N.
Alice

choose Xa €r [1,N]

| unsecure channel
compute ka := [Xa]g

Bob
— Kk

kB —
compute kag := [Xa]ks

choose xg €r [1,N]
compute kg := [Xg]g

compute kag := [Xg]ka

(to encrypt) as elements m of G.

Let G be a finite cyclic group of prime order N. We consider message
Alice ‘ unsecure channel Bob
choose xa €r [1,N]
compute a := [xa]m —a
choose xg €gr [1,N]
compute
b« b:= [XB]a = [XAXB]m
compute compute

a :=[xy]b = [xg]m —a

b’ :=[xg']a =m
v,
=} 5 = = E DaAr
S Roger Oyono | The DLP and its application in Cryptography

@ This encryption scheme is purely from theoretical interest
(pedagogic).

It is more convenient to generate a session key (via

Diffie-Hellman) for a use in a symmetric encryption (hybrid
encryption).

@ Principle: Both users are concerned to encrypt a message m.
@ Crucial point: the encryption in probabilistic.

public parameters: A finite cyclic group G = (g).
Bob’s public key: h = [x]g
Bob’s private key: x

To encrypt a message m € G that Alice want to send to Bob,
Alice use the public key h of Bob and choose k € [1,N —1] to
compute

a=[k]g, and b = [k]h+m.
@ Alice send (a,b) to Bob.
@ Bob can recover the message by computing

b— [x]a= [k]n+m — [kx]g = [kx]g — [kx]g+m =m.

public parameters: A finite cyclic group G = (g).

Bob’s public key: h = [x]g

Bob’s private key: x

Hypothesis: There is a (public fonction) f : G — Z/NZ.

To sign a message m € [1,N — 1] , Bob choose k €g [1,N — 1] to
compute a = [k|g.

@ Bob compute b € Z/NZ with
m = xf(a)+bk (mod N).

@ Bob send the message m and its signature s = (a,b) to Alice.
@ Alice accepts the signature if

[f(a)]h + [b]a = [xf(a) + kb]g = [m]g .

v

=] 5 = = E DaAr

The security of those protocols depends on
@ The choice of the (pseudo-) random generators
@ The problem of distribution of public key’s (PKI)
@ The choice of hash fonction
@ Hardware attacks, etc ...

Furthermore, for those simple protocols, we do not know if their
security is equivalent to the DLP (but for CDHP).

A cryptographically suitable group G must satisfy:
@ Representation of its elements in an easy and compact way.
@ Fast arithmetic, i.e. fast scalar multiplication.

@ DLP is computationally hard, in best case only the generic
methods works.

Consequence of Pohlig-Hellman reduction: It is important to know the
group order, or better to compute it efficiently. Furthermore, the value
or this order is used in some protocols.

The minimal amount of computations that we suppose infeasible is
~ 280,

—> The cardinality of the group order should have at least a
160-prime factor to avoid the generic attacks.

u]
]
I
w
i

QR

@ Prime fields: g =p

9 Multiplication: product of two integers, and reduction modulo p
@ Inverse: extended euclidian algorithm
@ Finite fields of characteristic 2

FZ[X]/ {Zc, ciE]F2,0§i<n}

@ Multiplication : product of polynomials with coefficients in F,, and
reduction modulo the defining polynomial f(x)

9 Inverse: extended euclidian algorithm for polynomials
— Extremly efficient arithmetic on those finite fields

@ Index calculus is a method to compute discrete logarithms, also
called indices.

@ p prime, elements of [F, represented by numbers in
{0,1,...,p—1}; g generator of multiplicative group.

@ Ifh € IF, factors as h = hy - hy - - -h, then

h= g ga2 .. .gan — ga1+a2+-..+an

with hj = g¥.
@ Knowledge of the a;, i.e. the discrete logarithms of h; to base g
gives knowledge of the discrete logarithm of h to base g.

@ If h factors appropriately . ..

=] 5 = = E DaAr

An integer is said to be B-smooth if its decomposition in prime factors
only contains primes p < B.

To evaluate the proportion of smooth numbers, we introduce the
function

ox,y) =#{1<n<x;nisy—smooth }.

For y = 23 we obtain the following proportions:

x| 100 | 1000 | 10000 | 100000
V) [7606 [37% | 14% | 4%

o LetN >0,0<a<1.c>0.
Ln(a,c) :=exp (c(logN)® (loglogN)*~?)

@ Ifa =0, then Ly(a,c) = (logN)® : polynomial in the length of N.
@ Ifa =1, then Ly(a,c) =expc(logN) = N° : exponential in the
length of N.
@ We say that Ly (0, c) is subexponential if 0 < o < 1.
N.B.: There exists algorithms for the "special” integer factorization

(n = p - q) with a subexponential running time: the fastest known
method is the Number field sieve with time complexity

0 (exp ((2.923 + 0(1)) (0g) (1oglog)¢)

where 0(1) = 8(n) — 0 for n — +oo.

For any ¢ > 0, when x — oo, then

Px, Lx(5:9))

1 1
~ 11
X Le(2,1) Le(35 %)

‘]
1
n
it

PLN G4

Let p a prime number, g a generator of Iy, = (Z/pZ)*,h € (g).
@ Choice of the "factors base”:

@ Bound of smoothness B,

° F8 = {pi, pi prime , p; <B}.

o How to compute the DLg(p;) for the p; € 5 ? (pi = gPla(Pi))
@ Find "some relations”:

@ Forarandomr €g [0,p — 2], compute g" (mod p).
@ If the obtained number is B-smooth, it gives "a relation”

r

g =

I_l piui = I_l gDLg(Pi)Gi — gZpiej}'B DLg (pi)Qi
Pi€FB Pi€FB

suchthatr = ¥, ¢, DLg(pi)0i (mod p—1).
@ Iterate the last step to get at least # 7 relations.

DA

u]
‘]
w

@ Lineare algebra:

@ We have a linear system (in the unknown DLg(p;)) with more
equations than unknown. We solve it to obtain DLg(p;) for all p;.

@ This step needs to be done only once per field and generator, it
does not depend on the target DLP h = g*.

@ Solving the original DLP:
How now to solve the DLP for h € (g), i.e. how to compute
DLg(h) ?

Choose randomly r € [1,p — 2] until g" -h (mod p) is B-smooth.
Then,

o' -h= [o andthus DLg(h) = 5 DLy(p)Bi —r.
Pi€Fs Pi€Fs

=] 5 = = E DaAr

It is much easier to find some relation if B is large, however we then
need much more relation (since #g will be large too)!
We will choose B to be of the form

1
B = Lp 57 p o
in IE‘; is B-smooth is

From the smoothness theorem, the probability that a random element

1 1)

Lp (5’5)
v,
o & = = = ©ae

@ The average time we will need to find the # g relation is:

A N E NS
P\2"2p pl2P) =\ 2P 2p)°

@ Linear algebra: The matrix representing the linear sytem is
sparse (O(logp) non zero terms in each row). We can then use

adequate algorithms with quadratic (in the length of the matrix)
running time.

The cost of the linear algebra is:
L 1 i =L 1 2
P 2) p - =p 2) p .

o P S = z wac

@ The cost of the final step (the smoothness relation of g
equivalent to the cost of one smoothness relation
@ The total cost of the algorithm is

1 1
Lp (§a2p> +|—p(P+ Zp) =Lp (2

2

(o))

@ The optimal value is obtained when p VL which gives the
complexity

") is

Lp(%,fz).

@ Running time with much more clever way of finding relations is

(exp ((1.923-+ 0(2))(l0g p)’ (10glogp)?))

u]
]
I
l
i
A\
’

Qe

Let g = 2". The field with q elements [is isomorphic to

Fy[x]/ (f(x)) = {Zcx cieF2,0§i<n}.

where f € F,[x] is an irreducible polynomial of degree n.
Adleman’s algorithm can be trivially extended to such fields :
@ Factoring into powers of small primes is replaced by factoring into
irreducible polynomials of small degree.
@ Same approach works, same problem of balancing size of

factorbase (and thus complexity of the matrix step) and the
likelihood of splitting completely over the factors base.

A

Best known attack for G = F§ : Lq(3.c)
Best known attack for generic groups: 2n/2

For the same security level, the bit length of the group order

of generic groups beahves like the cubic root of the bit length of #]F’gl

bit length for
DLP security in

generic groups
480
320
160
1000 4000

10000

[m} = =

bit length for
DLP security
inFy

PLN G4

Let K = [y be the finite field with g elements. An elliptic curve over K
is given by a non-singular equation

(1) E :y?4agxy +agy =x°+ax®+asx +ag
where a; € K. For a field extension L of K, the set of rational points of
E is

E(L) = {(x,y) € L2 : (x,y) satisfy (1)} U{o},
where O denotes the point at infinity.

A point of E is an element of E (K) where K is the algebraic closure of
K.

For any extension L of K, the set E(L) forms an abelian group with
identity element O.

A

A

A

_P_R

A

P+R

_P_R

A

E:y?>=x°+asx+ag, a € Fy

Z - Pour (x1,y1) # (X2, —Y2):
N

(x1,y1) @ (X2,¥2) = (X3,Y3)

= (A% —x1 — X2, A(X1 —X3) — Y1),
avec

iw ={ Bl

= Addition and Doubling differ considerably.:
11,2M,1Svs. 11,2M, 2S

Si X1 ?é X2,

Si Xy = Xo

PLN G4

P:(XlZY]_ZZ]_),Q:(XZZYzZZg),P@Q:(Xg,ZYg,ZZg)On
E:Y?Z =X34a,XZ?+ag

Addition: P # £Q A= YyZ; —Y1Z5,B = XpZ1 — X1Z

C = A%7,7, — B —2B2X,7,

X3 =BC,Z3 =B%2,7Z,

Y3 = A(B2X1Z, — C) —B3Y;Z,

Doubling: P =Q # —P
A=2a,Z22+3X2 B =YZ4,
C =X.Y1B,D=A?—-8C
X3 = 2BD,Z3 = 8B3.

Y3 = A(4C — D) —8Y2B?

No inversion is needed and the computation times are 12M + 2S for a
general addition and 7M + 5S for a doubling.

o 5 = = E DaAr

systeme points correspondence

affine (4) (x,y)

projective (?) (X,Y,2) (X/Z,Y/Z)

jacobi (7) (X,Y,2) (X/22,Y /Z3)
Chudnovsky jacobi (7€) (X,Y,z2,22,2%) (X /z2%,Y/Z3)

jacobi modifié (™) (X,Y,Z,az*) (X/z22,Y /Z3)
systeme addition doublements

affine (1) 2M 1S 11 2M 2SS 1I
projective (?) 12M 2SS - ™M 5S -

jacobi (1) 12M 4S - iAM 6S -
Chudnovsky jacobi (7€) 11M 3S - 5M 6S -

jacobi modifié (7™) 13M 6S - 4M 4S -

New efficient and "complete” formulae using Edward’s model for elliptic
curves: —> Lange & Berstein’s talks in two weeks |

[m] [= =

) Q

i
)
P

In cryptograhy, we usually consider elliptic curves over finite fields Fy.
The number of Fy-rational points of E is also finite, a bound is given by
Hasse’s theorem:

#E(Fq) =a+1-t,
with [t| < 2,/0. The integer t is called the trace of E.

For a "generic” elliptic curve, the best known attack is Pollard p
(combined with Pohlig-Hellman).

— Elliptic curves behave like generic groups.

Although, there are some classes of specific curves with much faster
attack :

@ MOV Reduction

@ Anomalous curves

@ Curves with non-trivial automorphisms group
@ Weil descent

Let G a subgroup of E(IFg) of prime order N|#E (F). The MOV
degree is the smallest integer k such that N |q" — 1.

.

The DLP in G can be reduced to the DLP in IE‘Zk.

Idea of the proof: Use the Weil pairing to embedd G in Fe. (=
Galbraith’s lectures on pairing in June).

Remark: The DLP can be solved in a subexponential running time in
]Fqk. However, for a random elliptic curve E, k is very large!

For elliptic curves with trace t = 0, we then have
#E(Fp) = p+1|p? — 1 and thus k = 2. Supersingular elliptic curves
over prime fields are thus less suitable for DLP based cryptography .

o 5

In some case, the DLP in E (F2n) can be reduced in a DLP of an
hyperelliptic curve of large genus over a smaller field.

We will see that there exists subexponential attacks for large genus
curves (last lecture "maybe”).

The curves defined over E (Fon) where n is composite are in danger
regarding this attack.

.

An anomalous elliptic curve is a curve over Fy, with #E(FF,) = p, such
that #E (Fp) ~ (Fp,+).

The above isomorphism can be given explicitly.

The DLP on such groups can be computed very efficiently.

=] F = = E DA

@ ANSI Public Key Cryptography for the Financial Services Industry

9@ X9.62-1998 — The Elliptic Curve Digital Signature Algorithm
(ECDSA)

9 X9.63-1999 — Key Agrrement and Key Transport Using Elliptic
Curve Cryptography (ECIES etc.)

@ NIST — FDigital Signature Standard FIPS 186-2 (revision 2000)

@ |EEE P1363a — Standart Specifications for Public Key
Cryptography

@ Standarts for Efficient Cryptography Group (Certicom)

@ ISO 15946

The natural generalization of elliptic curves to higher dimension are
abelian varieties.

J

PLN G4

u]
‘]
n

The natural generalization of elliptic curves to higher dimension are
abelian varieties.

DLP on an abelian variety over a finite field seems to be hard in
general.

Problem: difficult to obtain explicit examples.

= Jacobian varieties of algebraic curves.

Let C : f(x,y) = 0 be an algebraic curve defined over a field K, and let
L be an extension of K
@ Rational points of C :

C(L) = {(x,y) € L*:f(x,y) = 0}
@ The points of C are the elements of C(K)
@ LetK =y afinite field. The Frobenuis of Fy: x —— x% induces a
morphism of C via
Then

P=(x,y)— P9:=(x%y9)

C(Fq) = {P € C(Fq)|PY =P}

Let k be a field and C an algebraic complete curve defined over k,
g :=g(C) its genus.

u]
‘]
1
n
it

PLN G4

Let k be a field and C an algebraic complete curve defined over k,
g :=g(C) its genus.

C is said to be hyperelliptic if there exists a morphism ¢ : C — P* of
degree 2.

u]
‘]
1
n
it

PLN G4

Let k be a field and C an algebraic complete curve defined over k,
g :=g(C) its genus.

C is said to be hyperelliptic if there exists a morphism ¢ : C — P* of
degree 2.
Every hyperelliptic curve C/k admits a non-singular affine model

y?+h(x)y =f(x)
with deg(f) € {2g +2,2g + 1} and deg(h) < g.

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);

3

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

A<x,y> = AffineSpace(GF(7),2);
C1 = Curve(A, y2-(X'7+x-1));
Genus(C1);

Points(C1);

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);
3
>

Points(C1);
{@ (L 1), (1 6), 4 0), (5 3, 65 4 6 2 6 5 @

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);
3
>

Points(C1);
{@ (L 1), (1 6), 4 0), (5 3, 65 4 6 2 6 5 @
> P<X,Y,Z> := ProjectiveSpace(GF(7),2);

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);
3
>

Points(C1);
{@ (L 1), (1 6), 4 0), (5 3, 65 4 6 2 6 5 @
> P<X,Y,Z> := ProjectiveSpace(GF(7),2);
> C2:=Curve(P, Z'5*Y"2-(X'T+X*Z'6-2'7));

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);
3
>

Points(C1);
{@ (L 1), (1 6), 4 0), (5 3, 65 4 6 2 6 5 @
> P<X,Y,Z> := ProjectiveSpace(GF(7),2);
> C2:=Curve(P, Z'5*Y"2-(X'T+X*Z'6-2'7));
> Genus(C2);

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);
3
>

Points(C1);
{@ (L 1), (1 6), 4 0), (5 3, 65 4 6 2 6 5 @
> P<X,Y,Z> := ProjectiveSpace(GF(7),2);
> C2:=Curve(P, Z'5*Y"2-(X'T+X*Z'6-2'7));
> Genus(C2);
3

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);
3
>

Points(C1);
{@ (L 1), (1 6), 4 0), (5 3, 65 4 6 2 6 5 @
> P<X,Y,Z> := ProjectiveSpace(GF(7),2);
> C2:=Curve(P, Z'5*Y"2-(X'T+X*Z'6-2'7));
> Genus(C2);
3
> Points(C2);

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);
3
>

Points(C1);
{@ (L 1), (1 6), 4 0), (5 3, 65 4 6 2 6 5 @
P<X,Y,Z> := ProjectiveSpace(GF(7),2);
C2:=Curve(P, Z'5*Y"2-(X'7+X*Z'6-Z°7));
Genus(C2);

Pomts(CZ)
@

>
>
>
3
>
@

®:

The DLP and its application in Cryptography

Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<xy> = AffineSpace(GF(7),2);
> Cl1 = Curve(A, y2-(X7+x-1));
> Genus(C1);
3
>

Points(C1);

{@ (L 1), (1 6), 4 0), (5 3, 65 4 6 2 6 5 @
P<X,Y,Z> := ProjectiveSpace(GF(7),2);
C2:=Curve(P, Z'5*Y"2-(X'7+X*Z'6-Z°7));

>
>
> Genus(C2);
3
>

Points(C2);
@1:1:1),(1:6:1), 4:
6:5:1),(0:1:0 @
> SingularPoints(C2);
@(0:1:0 @

Roger Oyono The DLP and its application in Cryptography

A non-hyperelliptic curve C is a curve for which there exists no
morphism C — P of degree 2.

u]
‘]
n

PLN G4

A non-hyperelliptic curve C is a curve for which there exists no
morphism C — P of degree 2.

Let {wy, -, Wy} a basis of Q*(C). The curve C is non-hyperelliptic iff
the canonical morphism

0:

P +— O(P):=
is an embedding.

(P),...,wy(P)),

In this case, ¢(C) is a degree 2g — 2 curve of genus g.

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

> P<X,Y,Z> = ProjectiveSpace(Rationals(),2);

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

> P<X,Y,Z> = ProjectiveSpace(Rationals(),2);
> Cl = Curve(P,X'7 + X'3*Y2*Z72 + Z'7);

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

> P<X,Y,Z> = ProjectiveSpace(Rationals(),2);
> Cl = Curve(P,X'7 + X'3*Y2*Z72 + Z'7);
> Genus(C1);

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

> P<X,Y,Z> = ProjectiveSpace(Rationals(),2);
> Cl = Curve(P,X'7 + X'3*Y2*Z72 + Z'7);
> Genus(C1);

3

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);
phi(C1);

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);
phi(C1);
Curve over Rational Field defined by -X*Z + Y72

>
>
>
3
>
>

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);

phi(C1);

Curve over Rational Field defined by -X*Z + Y72
> C2 = Curve(P,Y 3*Z°2-X*(X-Z)*(X-2*2)*(X-3"Z)"2);

>
>
>
3
>
>

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);

phi(C1);

Curve over Rational Field defined by -X*Z + Y72
> C2 = Curve(P,Y 3*Z°2-X*(X-Z)*(X-2*2)*(X-3"Z)"2);
> Genus(C2);

>
>
>
3
>
>

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);

phi(C1);

Curve over Rational Field defined by -X*Z + Y72
> C2 = Curve(P,Y 3*Z°2-X*(X-Z)*(X-2*2)*(X-3"Z)"2);
> Genus(C2);

3

>
>
>
3
>
>

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);

phi(C1);

Curve over Rational Field defined by -X*Z + Y72
> C2 = Curve(P,Y 3*Z°2-X*(X-Z)*(X-2*2)*(X-3"Z)"2);
> Genus(C2);

3

> phi2 := CanonicalMap(C2,P);

>
>
>
3
>
>

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);

phi(C1);

Curve over Rational Field defined by -X*Z + Y72
> C2 = Curve(P,Y 3*Z°2-X*(X-Z)*(X-2*2)*(X-3"Z)"2);
Genus(C2);

>
>
>
3
>
>

phi2 := CanonicalMap(C2,P);

>
3
>
> phi2(C2);

The DLP and its application in Cryptography

Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

P<X,Y,Z> := ProjectiveSpace(Rationals(),2);
Cl = Cuve(PX'7 + X'3*Y'2°Z'2 + Z'7);
Genus(C1);

phil := CanonicalMap(C1,P);

phi(C1);

Curve over Rational Field defined by -X*Z + Y72
C2 = Curve(P,Y3*Z 2-X*(X-Z)*(X-2*Z)*(X-3*2) 2);
Genus(C2);

>
>
>
3
>
>

>
>
3
> phi2 := CanonicalMap(C2,P);

> phi2(C2);

Curve over Rational Field defined by

X3 - 6*X3Z - YIZ + 12¥Y'2*Z°2 - 4T*Y*Z'3 + 60*Z°4

The DLP and its application in Cryptography

Petri’s theorem (1923) gives an explicit description of the image of a
non-hyperelliptic curve under the canonical embedding.

J

PLN G4

Theorem
Let C be a curve of genus g > 1 defined over a field k s.t. C(k) # 0.

Then, there exists a g dimensional abelian variety Jac(C) (the
jacobian of C) and a morphism (both defined over k)

®: C— Jac(C)
with the universal property:

Let C be a curve of genus g > 1 defined over a field k s.t. C(k) # 0.
Then, there exists a g dimensional abelian variety Jac(C) (the

jacobian of C) and a morphism (both defined over k)

®: C— Jac(C)
with the universal property:

Leth: C — A a morphism of C in an abelian variety A. Then there
exist an homomorphism o : Jac(C) — A and an elementa € A, s.t.
h(x) =a(®(x))+aforallx € C.

@ Adivisor on C is a formal sum D = 5 npP (almost all np = 0)
where P € C(Fy).

@ Adivisor on C is a formal sum D = 5 npP (almost all np = 0)
where P € C(Fy).
Examples:

Ds P1+2P,+3Ps

+301P5

@ Adivisor on C is a formal sum D = 5 npP (almost all np = 0)
where P € C(Fy).

Examples:
D, = P1+2P,+43P3 +301P5
D, = —7P

—301P5+101Q;+Q2 — 3Q3

@ Adivisor on C is a formal sum D = 5 npP (almost all np = 0)

where P € C(Fy).

Examples:

D1
D,
D; +D2

P1+2P>+4-3P3
—7P;

—6P;+2P,+3P3

+301P5

—301P5+101Q:4+Q, —3Q3
+1010:4-Q2 —3Qs,

@ Adivisor on C is a formal sum D = 5 npP (almost all np = 0)
where P € C(Fy).

Examples:
D; = P1+2P,+3P3 +301P5
D, = -7P; —301P5+101Q;+Q2 —3Q3
D1+D; = —6P1+2P,+3P; +101Q:1+Q2 - 3Qs,

@ The set of all divisors forms an abelian group Div(C).
@ Adivisor D is effectif (D > 0) if np > 0 for all P.

@ Supp(D) := {P € C(Fq) : np # 0}.

@ Degree of a divisor: deg(D) := Ypnp.

@ Adivisor D is defined over Fy if D = D° for any 0 € Gal(Fq,Fy).

@ Adivisor D is defined over Fy if D = D° for any 0 € Gal(Fq,Fy).
Examples:

Let Py,---,Pg points of the curve C/FFq s.t
- P1,P2,P3 € C(Fq)

- Pye C(qu) — C(Fq)

- Ps € C(Fqs) = C(Fq)

Examples:

@ Adivisor D is defined over Fy if D = D° for any 0 € Gal(Fq,Fy).

- Pl,Pg,P3€C(Fq)
- P4€C(Fq2)—C(Fq)

Let Py,---,Pg points of the curve C/FFq s.t.
- Ps € C(Fqs) = C(Fq)

Then, the following divisors are [Fq-rational
Dy = Py,Dy:=P; +Py,D3 : =P, +P],

The divisors Dg := P4, D7 := P5+ Pg are not Fy-rational.
@ Divp,(C) is a subgroup of Div(C).

For a function f € Fq(C)* we associate the principal divisor (f) defined by

(f) = va(f)p

-

)

PLN G4

For a function f € Fq(C)* we associate the principal divisor (f) defined by

(f) = va(f)p

Vp(f) >1

PLN G4

The following divisor is principal:

(f) =P1+P2+P3+Ps—(2Q1 +2Q2)

PLN G4

@ The principal divisor (f) describe the zeros and poles (with
multiplicities) of f.

@ (f) is defined over Iy iff f is defined over IF.
@ Any principal divisor is of degree 0.

@ The set Princ(C) of principal divisors forms a subgroup of the set
Div°(C) of all divisors of degree zero.

@ Two divisors D; and D, are said to be equivalent if they differ
from a principal divisor. Write D; ~ D,.

E:y?2=x3—x

(F(x,y)) =P+Q+R—3Ps

(G(x,y)) =Q+K —2P

(ZE’;‘B):P—I—Q—FR—SP&—(Q—I—K—ZPW):(

and thus (P — Po) + (R —Pw) ~ (K — Po)

[m]

> Pe)+ (R —Pe) — (R —Pa)

=

PLN G4

E:y?2=x3—x

(F(x,y)) =P+Q+R—3Ps

(G(x,y)) =Q+K —2P

(ZE’;‘B):P—I—Q—FR—SP&—(Q—I—K—ZPW):(

and thus (P — Po) + (R —Pw) ~ (K — Po)

[m]

> Pe)+ (R —Pe) — (R —Pa)

=

PLN G4

E:y?2=x3—x

(F(x,y)) =P+Q+R—3Ps

(G(x,y)) =Q+K —2P

(ZE’;‘B):P—I—Q—FR—SP&—(Q—I—K—ZPW):(

and thus (P — Po) + (R —Pw) ~ (K — Po)

[m]

> Pe)+ (R —Pe) — (R —Pa)

=

PLN G4

E:y?2=x3—x

(F(x,y)) =P+Q+R—3Ps

(G(x,y)) =Q+K —2P

(ZE’;‘B):P—I—Q—FR—SP&—(Q—I—K—ZPW):(

and thus (P — Po) + (R —Pw) ~ (K — Po)

[m]

> Pe)+ (R —Pe) — (R —Pa)

=

PLN G4

° PiC]%q(C) is the quotient group of Div]%q(C) by the subgroup of
principal divisors.

@ Call this the divisor class group (or Picard group).

° Pic]%qI (C) is isomorphic to the group of ¢ -valued points of the
Jacobian Jac(C) of C.

@ dim(Jac(C)) =gc.

@ Weil's theorem implies

|[#C(Fq) —(a+1)] <29V,

(va—1)* < #Jac(C)(Fq) < (va+1)*,
in particular # Jac(C)(Fq) ~ q°.

Let Py, ---, P10 points of the curve C /,. Let
D:=P;+Pz+-+-+Pgg—99P100
a degree zero divisor with support

Supp(D) = {P1,--- ,P100}

Is it possible to find a divisor D’ ~ D with less points on its support?

Let Py, ---, P10 points of the curve C /,. Let
D:=P;+Pz+-+-+Pgg—99P100
a degree zero divisor with support

Supp(D) = {P1,--- ,P100}

Is it possible to find a divisor D’ ~ D with less points on its support?
Answer: YES, it is even possible to have #Supp(D’) = MIN.
Idea: Use the Riemann Roch theorem.

Let C /k be a hyperelliptic curve of genus g, P., a fixed k-rational point
of C. For a k-rational divisor D of degree 0, there exists a unique

positive divisor E of minimal degree m < g, with Po, ¢ SUpp(E), such
that

D ~E —mPg

The divisor E is called a (reduced divisor), and m its weight.

Let C /k be a hyperelliptic curve of genus g, P., a fixed k-rational point
of C. For a k-rational divisor D of degree 0, there exists a unique

positive divisor E of minimal degree m < g, with Po, ¢ SUpp(E), such
that

D ~E —mPg

The divisor E is called a (reduced divisor), and m its weight.

Given two reduced divisors D; — n; P, et D, — nyPo,, compute the
reduced representative D™ — n3P,, of the formal sum
(Dl = anm) + (D2 = nsz).

u]

]
I

w
i
N)
ye)
?

(0

A

Consider a genus 2 hyperelliptic curve,
with two reduced divisors

(P1+P2—20) and (Q;+ Q2 —2).

e
o

PLN G4

There is a unique cubic which passes
through the four given points.

Q2

N
2

Q1

PLN G4

It intersects C in two more points.

Q2

Q1

|
kY
i
|
Pl
9

PLN G4

fi
IBSCL:

Mirror them w.r.t. x-axis and form sum
(R

) Qe Qe e 2)
~ Ry +Ry =200

Q2

P2 Rz
W <
Ry Q
—R,

Q1

PLN G4

@ For hyperelliptic curves y2 +h(x)y = f(x), Mumford proposed a
two polynomials u, v s.t.

unique (compact) representation of reduced divisors by a pair of
u,v € Fy[x],
u monic,

deg, v <deg,u <g,

u(x) divides v(x)?+h(x)v(x) —f(x).

X

Pi = (xi,Vi) € Supppyy < u(xi) = 0,v(x) =y; with multiplicity .
@ Arithmetic uses “only” arithmetic on polynomials ... but is far less
efficient than on elliptic curves (if applied directly).

u]
]
I
w
i
A\

DA

Algorithm Composition & Reduction (Cantor/Koblitz)

INPUT: D1 = [ug, V1], D2 = [Uz,V2] and C: y?+h(x)y = f(x)
OUTPUT: D1 +D2 = [UD1+D27VD1+D2]

1.
2.
3.

S

© © N ©

Compute di = ged(ug, Up) = €1U + Uz

Computed = ged(dy,vi + V2 +h) = cidi + (Vi + V2 + h)
Letsy =cie1, 9 =C18, 3 =02

u= u_éuzg V= S1U1Vo+SpUpVy +83(V1va+f) mod u

Theresult [u,v] correspondsto a semi reduced divisor.
Letu' = &%y — (h—v) mod v

if degu’ >g alorsu:=u,v:=V gotostep5

Make u monic

Theresult [u,v] corresponds to areduced divisor.

u]
]
1
n
it

PLN G4

genus 2

2000 Harley (car. impaire)

2001 Lange (car. arbitraire) = 2 inv.
2001 Matsuo, Chao, Tsujii (...)

2002 Miyamoto, Doi, Matsuo, Chao, Tsujii
2002 Takahashi

2002 Lange (car. arbitraire) = 1inwv.
2002 Sugizaki, Matsuo, Chao, Tsujii
(car. paire)
genus 3

2002 Kuroki, Gonda, Matsuo, Chao, Tsujii
2002 Pelzl, Guyot & Patankar

}=>1inv.

o 5 = = E DaAr

Addition, degu; = deguy =2

input [[ug,va], [uz, V], uy =xZ + i1 +Ujg, Vi = Vi X +Vvig
Output | [u’,v'] = [ug,va] +[up, Vo]
Step Expression Operations

1 Computation of the resultant r of uy, ux: 1S, 3M
2z =11 — U1, Zp = Up — U10, 23 = U1121 +22;
1 =2p23+ 7} ugg;

2 Compute the "almost inverse” of u, modulo uy (inv =r/uz mod uy):
invy =23, invg = z3;

3 Compute s’ =rs = (v1 — Vvp)inv mod uy: 5M
Wo = V10 — V20, W1 = V11 — V21, W2 = iNVoWo, W3 = invVawy;
s} = (invo +invy) (Wo +w1) —wp —wa(1+u11), S) = Wp — UzgWs;

4 Compute s” = X +s0/s1 =X +5/s] etsy: 1, 2S, 5M
wy = (1s}) "L (=1/r2sy), wp =wy (= 1/57), w3 =5 Twy (= 51);
Wy =mwp(=1/s1), ws = W2, s =sowp;

5 Compute I = s"up = xZ +15xZ +1[x +1{: 2M
17 = Up1 +50, 1] = up18] +Uz0, I = uz0sg

6 Compute u” = (s(I +h+2vp) —k)/up = xZ +ujx +u): 3M
ué = (sf’,’/— u11)(S§ — 21 +hawa) —ugo +1] + (hy -+ 2vo1)Wy + (2up1 + 21 — T4)ws;
Uy =28y — 23 +hawg —ws;

7 Compute vV = —h — (I+vz) mod u” = v{x +v]: 4M
w1 =15 —uf, wo = ujwy +uf — 17, v{ = wowz —Vp1 —hy +hauy;
Wo = ujwy — Ig, v§ = Wpwz — Voo — ho + haug;

[total 1,35, 22M]

u]
‘]
1
n
it

@ ¢(C) is a smooth plane quartic,

@ Conversely, any nonsingular quartic curve C in IPZ(k) is a

canonical embedding of a non-hyperelliptique curve of genus 3.

PLN G4

Let C/k be a non-singular curve of genus g and D* be an effective
k-rational divisor of degree g. Then every divisor class has a
representative of the form

E-D"
divisor E is unique.

where E is an effective k-rational divisor of degree g. Generically, the

k-rational divisor of degree g. Then every divisor class has a
representative of the form

Let C/k be a non-singular curve of genus g and D* be an effective

E-D"
divisor E is unique.

where E is an effective k-rational divisor of degree g. Generically, the

For two reduced divisors D; — D% and D, — D®, compute the reduced
representative D™ — D% of (D; — D®) + (D, — D®).

A

A

A

Q>

Q>

¢
d
S

¢
d
S

Q>

Let D® := Py 4 PS + PS. For an element D in Div°(C), let DT be an
effective divisor (generically unique) such that D* — D® ~ D.

u]
‘]
n

PLN G4

Let D® := Py 4 PS + PS. For an element D in Div°(C), let DT be an

effective divisor (generically unique) such that D* — D® ~ D.

Let D;,D, € DiV2(C). Then D; + D; is equivalent to a divisor
D = DT — D®, where the points in the support of DT are given by the
following algorithm:
© Take the unique cubic E which goes (with multiplicity) through the
support of D;",D; and Py, P, P, This cubic also crosses C in
the residual effective divisor D3.
© Take the unique conic Q which goes through the support of D3

and P;°,P2’. This conic also crosses C in the residual effective
divisor D

@ For hyperelliptic curves y2 +h(x)y = f(x), Mumford proposed a
two polynomials u, v s.t.

unique (compact) representation of reduced divisors by a pair of
u,v € Fy[x],
u monic,

deg, v <deg,u <g,

u(x) divides v(x)?+h(x)v(x) —f(x).

X
P, = (Xi,yi) c Supp[u’v] &= u(xi) = O,V(Xi) =y; with multiplicity .
(typical divisor).

@ Not anymore true for non-hyperelliptic curves, only suitable for

For non-hyperelliptic curves of genus 3: The Mumford representation
in only useful for typical divisors

A divisor D = D — D, € DivY(C) is a divisor with the following
properties:

@ deg(D")=3, DT >0,
@ the three points in the support of DT are non-collinear,
@ there is no point at infinity in the support of D,

@ the (xj)i=1,23 are distinct (P; = (X; : y; : 1) be the three points in
the support of D).

For non-hyperelliptic curves of genus 3 :

Let C the plane quartic with affine equation f(x,y) = 0. A typical
polynomials u,v s.t.

reduced divisor over k can be uniguely represented by a pair of two

u,v € IFq [X]a
u monic,

deg,u =3,
deg, v =2,

u(x) divides f(x,v(x)).

INPUT: Dy = [ug, V4],

Dy = [uz, V2],
C/k:

y3+ha(x)y2 +ha(x)y —f4(x) =0
Three steps: finding the cubic w, reduce —(D; + D), taking the
opposite.

u]
‘]
1
n
it

PLN G4

INPUT: Dy = [u,v1], Dz = [uz, V2],
C/k: y3+hi(x)y?+ha(x)y —fa(x) =0

Three steps: finding the cubic w, reduce —(D; + D), taking the
opposite.

The only step where we distinguish between addition and doubling.

In the most common case w = y2+sy +t, where deg,(s) =2,
deg,(t) = 2.

We use the fact:
@ w € (y —vq,ug)N(y —vp,uy) for addition.
@ w e (y—vg,up)® = ((y —v1)?,(y —v1)-uy,uf) for doubling.

® U_(p,4p,) = normalized quotient of Res(w,C,y) by u; - up
@ To compute V_(p, 4 p,) use the relation

(t—s®—hy+shy)-v_(p,1p,) = (st—thy—fs) mod u_(p,p,),

® U_(p,4p,) = normalized quotient of Res(w,C,y) by u; - up
@ To compute V_(p, 4 p,) use the relation

(t—s®—hy+shy)-v_(p,1p,) = (st—th; —f4) mod U_(D,+D;):
9 VD, +D, = V—(D;+Dy)
@ Up,+p, = nNormalized quotient of
3

by up, +p,

2
VD1-|—D2 + VD1+D2 hl + VD1+D2 h2 — f4

Algorithm Additionin Jac(C) (Flon-Oyono-Ritzenthaler)

INPUT: D1 = [z, V4] , D2 = [Up, V2] €t C: Y3+ hy(X)y? + ho(X)y = fa(X)
OuTPUT: D1+ D2 = [Up, 1D, VD, +D,)

1

Computation of the cubic E
Compute theinverset; de vy — v2 modulo u
Determine the remainder r of (up — up)t1 by uz
Solvethe linear system
{ degy(—va(v1+9) +usdy) =2 (2eq)
ViV +Ss=r1d1 (U] (3eq)
withs,8; € k[x], deg(s) =2 etdeg(d1) = 1. Then
E=(y-vi){y+vi+s)+wd
Computation of the conic Q
Compute U’ := Res*(E,C,y)/(u1U2)
Computetheinversea; of t — s2 — hp +shy modulo U’
Compute the remainder V' of o1 (st —thy — f4) by
Compute de Dy + D2
VDD, =V
Up, 4D, = (V3 +V2hy + vhp — f4)/(U))*
D1+ D2 = [Up,+D,, VD, 4D,

u]
]
1
n
it

PLN G4

Algorithm Doublingin Jac(C) (Flon-Oyono-Ritzenthaler)

INPUT: D1 = [ug,va] and C:y3+hy(x)y? +ha(x)y = fa(x)
OUTPUT: 2Dy = [Upp, . Vap,]

1

Computation of the cubic E
Compute oy = (V§ +V3hy +vihy — fa)/ug
Compute theinverset; of w; modulo uy
Compute the remainder r of (3vZ + 2vihy + ha)ty by ug
Solvethelinear system

{ deg, (—vi(v1+8)+usdy) =2 (2eq)

Vi+Vi+S=181 [y (3eq)

with's & € kx|, deg(s) =2 et deg(8y) = 1. Alors

E = (y—vi)(y+Vi+8)+wmd
Computation of the conic Q
Compute U’ := Res*(E,C,y)/(u1uz)
Computetheinversea of t —s2 — hp +shy modulo U’
Compute the remainder v of ay (st —thy — f4) by U’
compute de Dy + D2
VDD, =V
Upy 4D, = (V¥ +V2hy +vha — f) /(U))*

D1+ D2 = [Up,+D,,VD,+D,]

u]
]
1
n
it

PLN G4

@ Use Karatsuba or Toom-Cook tricks to speed up the algorithm.
@ Cost of the algorithm:
v
. 3
C/k: y +ha(x)y —fa(x) =0
. hyperelliptic Csa generic quartic
SLEETE of genus 3 Picard = deg(h,) =1 | deg(h,) =2 | deg(h,) =3
FOR Add 21+130M | 2I+138M 21+145M 21+163M
Methods | Dbl 21+152M | 2I+160M 21+167M 21+185M
Previous | Add 1+70M 21+140M | 21+147M 21+150M
Work Dbl 1+71M 21+164M | 2I+171M 21+174M
v
=] F = E DA

@ Presented algorithm has geometric viewpoint; did not separate
composition from reduction like in Cantor algorithm.

@ Cantor algorithm and its improvements (Lange) for computing in
the Jacobian of hyperelliptic curves of genus 2 coincide with the
geometric point of view.

@ This geometric approach can be generalized to large genus
non-hyperelliptic curves (Oyono-Thériault (work in rogress) :
21 4+ 272M + 11SQ for addition, 21 + 304M + 14SQ for doubling
and 2| +41M + 3SQ for inverse in the Jacobian of C3 s-curves).

o P S = z wac

Using the 2-adic expansion of 7: [7]g = [2](([2]9) +9) + 9.

Algorithm —2-adic Expansion.

INPUT: m=5 " 'm2 e N,m € {0,+1}, g€ G
OuTPUT: €:=mg

Precompute and store —g
Compute | (m) and w(m) = #{m | m # 0}
Pute:= (—-1)'g, where f :=I(m)+w(m) mod 2
fori=1I(m)—2to0do
e:=-2e
fi=1-1
if m #0then
ei=—(e+(-1)'mg)
fi=1-f
5. returne

1
2

3.
4.

u]
]
1
n
it

PLN G4

Using the 2-adic expansion of 7: [7]g = [2](([2]9) +9) + 9.

Better, use the —2-adic expansion : [7]g := —(—[2](=[2](=[2]g)) +9)-

This method is useful for groups where computing —(D; + D) is faster than computing
D; + D. This method is in particular interesting for non-hyperelliptic curves.

Algorithm —2-adic Expansion.

INPUT: m=5 " 'm2 e N,m € {0,+1}, g€ G
OuTPUT: €:=mg

Precompute and store —g
Compute | (m) and w(m) = #{m | m # 0}
Pute:= (—-1)'g, where f :=I(m)+w(m) mod 2
fori=1I(m)—2to0do
e:=-2e
fi=1-1
if m #0then
ei=—(e+(-1)'mg)
fi=1-f
5. returne

1
2.
3.
4.

Let D = [u(x),v(x)] a divisor class in Jac (C)(FFg). Let u(x) = [ui(x)
the decomposition of u in irreducible factors in Fg[x]. Let vi(x) = v(x)
(mod u;(x)). Then

D= [ui(x),vi(x)]-

This "induces” a kind of unique factorisation in Jac (C)(Fy) :

@ Adivisor class D = [u(x),Vv(x)] is said to be prime if u(x) is
irreducible.

@ A divisor is said to be B-smooth if the irreducible factors of u(x)
have degree < B.

INPUT:

@ A genus g hyperelliptic curve C ,
@ D; € Jac(C)(Fg), and D, € (Dy),

@ n = ord(D;) (supposed to be prime).

ALGORITHM TO SOLVE THE DLP IN (Dy):

@ Choose a good smothness bound B < g.
@ Construct a factor base

Fg = {D € Jac(C)(Fq) : D prime, with degu(x) <B}.
@ Find relations (at least # #g)

Si = a;D; +b;Dy,
where S; factors in Fg.

aiybi €R [17n]a
O < = = :zlf)o\@
S Roger Oyono | The DLP and its application in Cryptography

@ Linear algebra: Find a linear combination (;)

Z\ﬁsi =0= (zyiai)Dl_'_(zwbi)DZ-
@ Deduce the DLP :

DLo, (D;) = — 2Y&

S Vib (mod n).

HEURISTIC: The polynomials u(x) associate to the divisor classes
Si € ¥ behave like purely random polynomials.

—> The probability of smoothness follows the subexponential law.

Choice of the smoothness bound (Gaudry-Enge):

oo (35)

In this case the cost of the algorithm will be:

CHEATING: B is an integer (its a degree)!
The above method is subexponential if g > logq.

If g is small (compared to logq), then the optimal value of B tends to 0.
However, we must choose B > 1.
— Wrong analysis for small g.

Analysis for g fixed: andq — +oo:

Take B =1, then # %5 ~ (.

1

The proportion of smooth elements is o

Total costs: O(gg? +g'q), and if g < logq the time is dominated by
0(gq?)

o P S = z wac

Gaudry et al. (2000-2006) provided a modified version of the index
calculus (using large / double large primes variation) to get an
improvement for the DLP on curves of small genus g > 2:

0 ((log Q)gzqz‘g)

group operations for solving the DLP.

g 1 2 3 4 5 6

Pollard a2 gt [*2 || o2 [q°2] o3

Index (original) | q®> | g® | 9° g2 @ | 92
index (variation) g3 || g3/

8/5 5/3
9%/ | g/
v
o < = = = Dace

Previous Index calulus attacks carrie over nicely to non-hyperelliptic
curves.

Furthermore, Diem (2007) went back to the ideas of Adleman,
DeMarrais and Huang: the complexity of its method (for degree d

curves) is
2—_2_
(@) (q d—2> ,
and is thus O(q) for smooth plane quartics (non-hyperelliptic curves of
genus 3).

On the other hand, B. smith (2007) developed a method using
isogenies that for 18,57% genus 3 hyperelliptic curves allows one to
transfer the DLP to a non-hyperelliptic curve.

=] 5 = = E DaAr

Thank you for your attention!

