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Discrete logarithm problem (DLP) (1)

Two main problems on which public key cryptography is based:

integer factorisation (in RSA).

DLP (ElGamal Cryptosystem, Diffie-Hellman key exchange):

Let G be a cyclic finite abelian group and g ∈ G be a generator of
G. The discrete logarithm problem (DLP) in G is the following:

Given an element h ∈ G, find the smallest positive integer x such
that

h = [x ]g (additive group) / h = gx (multiplicative group) .

We will denote such an x with DLg(h) .
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Discrete logarithm problem (DLP) (2)

As we will see later, a cryptographically suitable group G must satisfy
the following conditions:

representation is easy and compact.

fast arithmetic.

DLP is computationally hard.

group order can be computed efficiently.
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CDHP and DDHP

The computational Diffie-Hellman Problem (CDHP) is the
problem:

Given g,hx = [x ]g and hy = [y ]g , compute [xy ]g .

The resolution of the DLP implies the resolution of the CDHP.

The decisional Diffie-Hellman Problem (CDHP) is the problem:

Given g, hx = [x ]g, hy = [y ]g and hz = [z]g , decide if hz = [xy ]g.

There are groups G for which DDH is easier than CDLP or DLP,
but we do not know how to answer this question in general.
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Overview (1)

Efficient scalar multiplication

Solving the DLP in generic groups
Pohlig-Hellman
Shanks’ Baby step - Giant step
Pollard rho

Cryptographic protocols based on the DLP
Key exchange
Encryption
Signature
Security: what is a cryptographically secure group?
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Overview (2)

Subexponential algorithms for the DLP in finite (prime) fields
Generalities
Smooth numbers, factor base and subexponentiality
Adleman’s algorithm

Elliptic curves
Generalities

Why interesting?
Group Law

DLP on ”special elliptic curves”

Hyper- and Non-hyperelliptic curves
Generalization: Abelian varieties and Jacobian varieties

Generalities
Why interesting?

Group law on Hyperelliptic Jacobians (of small genus)
Group law on non-hyperelliptic Jacobians (of small genus)
Index calculus
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Scalar multiplication using binary left to right (1)

Algorithm (binary left to right (1))
IN: P ∈ G et n ∈ N

n = (nl−1 . . . n0),nl−1 = 1.
OUT: [n]P ∈ G.

1 R← P
2 for i = l−2 to 0 do

1 R← [2]R
2 if ni = 1 then R← R⊕P
3 i← i−1

3 return R

cost: O(logn) doublings /additions in the group G.
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Example: binary left to right (2)

The above algorithm is based on the binary expansion of the scalar n:

[(nl−1 . . . n0)2]P = [2]([(nl−1 . . . n1)2]P)⊕ [n0]P

Example: 45 = (101101)2

P
2P
2(2P)⊕P
2(2(2P)⊕P)⊕P
2(2(2(2P)⊕P)⊕P)
2(2(2(2(2P)⊕P)⊕P))⊕P = [45]P
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Generic groups (1)

A generic group is a group where we can only:

Represent group elements (uniquely)

Apply the group operation to a pair of elements to obtain a new
element

The representation of the group elements gives us no information on
the structure of the group.

The group operation may be done using an oracle.

Most groups are not generic groups, but we can look at them as
generic groups if we ”forget” the extra information...

Algorithms for solving the DLP for generic groups give us an upper
bound on how hard things are!
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Generic groups (2)

In generic groups, we have three methods to compute DLg(h):

Baby step - Giant step (Shanks)

Pollard ρ
Pollard kangaroo

and one more method to take advantage of the decomposition of the
group order

Pohlig-Hellman
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Pohlig-Hellman

Idea: Non trivial subgroups can make the DLP easier!

Suppose the additive cyclic group G = 〈g〉 has order

N = pα1
1 ·pα2

2 · . . . ·pαk
k

If we know DLg(h) modulo pαi
i for every i , then we can compute

DLg(h) via the Chinese remainder theorem.

From the group order, we have:

G ≃ G1×G2×·· ·×Gk

with
Gi ≃ Z/pαi

i Z
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Subgroups

We can restrict the DLP from G to Gi :

Define gi =
[

N
p

αi
i

]

g and hi =
[

N
p

αi
i

]

h .

We can compute DLgi (hi ) in a group of order pαi
i (instead of N).

We have

DLgi (hi )≡
DLg(hi )

DLg(gi )
≡

DLg(
[

N
p

αi
i

]

h)

DLg(
[

N
p

αi
i

]

g)
≡

[

N
p

αi
i

]

DLg(h)
[

N
p

αi
i

]

DLg(g)
≡ DLg(h),

and gi has order pαi
i , so

DLg(h) ≡ DLgi (hi) mod pαi
i .
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Prime Powers

Assume now that G = 〈g〉 ≃ Z/pα
Z and h ∈ G. For DLg(h) = x , write

x = x0 + x1p + x2p2 + . . .+ xα−1pα−1 (mod pα)

with xi ∈ [0,p−1]Z.

Let g′ = [pα−1]g, then g′ has order p and the equality [x ]g = h
becomes:

[x0]g
′ = [x ]g′ = [pα−1]h

x0 can be find by computing DLg′([p
α−1]h) in 〈g′〉 (a subgroup of

order p). We also compute x1 via a DLP in 〈g′〉:

[x1]g
′ = pα−2([−x0]g + h)

We iterate this approach to compute x2,x3, . . . ,xα−1 and thus x .
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Pohlig-Hellman: An example

Consider a finite abelian group G of order

#G = 229321514751191013

#G is a 160 bits number ...

Using Pohlig-Hellman with a exhaustive search for the discrete log on
the (sub)groups of prime order, we can solve the DLP in less than
3000 group operations.

That’s less than the cost of 12.5 scalar multiplications!
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Shanks’ Baby step - Giant step

Let G = 〈g〉, and n a good upper bound of #G. Let u ≈√n.

Considering the u-adic expansion of x = DLg(h)

x = x0 + ux1, with xi ∈ [0,u−1] ,

we get
[x ]g = h⇐⇒ [x1]([u]g) = h− [x0]g .

To solve the DLP in G:

We construct the list

S = {h,h− [g],h− [2]g, . . . ,h− [u−1]g} (Baby step)

We compute succesively the values [x1]([u]g) for x1 = 0,1, . . .
and stop when such an element belongs to S (Giant step).
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Cost

We have u Baby steps, each taking 1 group operation.

Computing [u]g takes O(log u) group operations.

We have u Giant steps, each taking 1 group operation.

The total cost is u + u + O(logu), which is O(
√

n).

The memory requirements is also O(
√

n) .
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Random walks

Let G be a finite group of order N (in practice G = 〈g〉).
A random map is a function F : G −→ G such that the image of
x ∈ G is choosen (uniformly) at random in G.

A random walk in G is a sequence of elements of G, starting at
x0, such that xi+1 = F(xi). The sequence x0,x1,x2, . . . is
eventually periodic (G is finite). We are interested in the value of i
for which the first repetition occurs.

Claim: The average time for the first repetition is
√

π/2
√

N.

Proof: Starting from x0, choose the image of xi at random the first
time you see xi . The first repetition occurs at the first time when
your random choice is an element that was chosen at a previous
step. Use the Birthday Paradox.
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Pollard ρ

Once again, we want to compute DLg(h) for h ∈ G = 〈g〉, a group of
prime order N.

If we define
F(x) = [αx ]g +[βx ]h ,

and x0 = [α0]g +[β0]h for randomly choosen αx ,βx ,α0 and β0, then
the the first repetition (the point where we close the loop) gives us a
relation of the form

[αi ]g +[βi ]h = [αj ]g +[βj ]h
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Pollard ρ

We group the g′s and h′s together, and we get:

[βi −βj ]h = [αj −αi ]g .

With a little bit of luck, gcd(N,βi −βj) = 1, and we have

DLg(h)≡ (αj −αi)/(βi −βj) (mod N) .

The expected time for the algorithm is O(
√

N).

But in this form, the algorithm has memory O(
√

N)...

Although, it is possible to reduce the memory complexity to O(1) using
distinguished points and pseudo-Random walks (Floyd’s method for
cycles detection).
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Principal goals of the Cryptography

Historically, the most important goal of the cryptography was to
secure private communication (Encryption).

Nowadays, there are other goals
authentification
non-repudiation
integrity

The discover of public key cryptography provides methods to realize
the above goals:

asymmetric encryption

Signature

Key exchange (for session key in symmetric encryptions)

electronic voting, etc ...
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Diffie-Hellman Key exchange

Let G = 〈g〉 be a finite abelian cyclic group of order N.

Alice unsecure channel Bob

choose xA ∈R [1,N]
compute kA := [xA]g −→ kA

choose xB ∈R [1,N]
kB ←− compute kB := [xB]g

compute kAB := [xA]kB compute kAB := [xB]kA
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Massey-Omura encryption

Let G be a finite cyclic group of prime order N. We consider message
(to encrypt) as elements m of G.

Alice unsecure channel Bob

choose xA ∈R [1,N]
compute a := [xA]m −→ a

choose xB ∈R [1,N]
compute

b←− b := [xB]a = [xAxB]m
compute compute

a′ := [x−1
A ]b = [xB]m −→ a′ b′ := [x−1

B ]a′ = m
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Massey-Omura

This encryption scheme is purely from theoretical interest
(pedagogic).

It is more convenient to generate a session key (via
Diffie-Hellman) for a use in a symmetric encryption (hybrid
encryption).

Principle: Both users are concerned to encrypt a message m.

Crucial point: the encryption in probabilistic.
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ElGamal Encryption

public parameters: A finite cyclic group G = 〈g〉.
Bob’s public key: h = [x ]g

Bob’s private key: x

To encrypt a message m ∈ G that Alice want to send to Bob,
Alice use the public key h of Bob and choose k ∈R [1,N−1] to
compute

a = [k ]g , and b = [k ]h + m .

Alice send (a,b) to Bob.

Bob can recover the message by computing

b− [x ]a = [k ]h + m− [kx ]g = [kx ]g− [kx ]g + m = m .
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ElGamal Signature

public parameters: A finite cyclic group G = 〈g〉.
Bob’s public key: h = [x ]g

Bob’s private key: x

Hypothesis: There is a (public fonction) f : G −→ Z/NZ.

To sign a message m ∈ [1,N−1] , Bob choose k ∈R [1,N−1] to
compute a = [k ]g .

Bob compute b ∈ Z/NZ with

m≡ xf (a)+ bk (mod N) .

Bob send the message m and its signature s = (a,b) to Alice.

Alice accepts the signature if

[f (a)]h +[b]a = [xf (a)+ kb]g = [m]g .
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Security of those protocols

The security of those protocols depends on

The choice of the (pseudo-) random generators

The problem of distribution of public key’s (PKI)

The choice of hash fonction

Hardware attacks, etc ...

Furthermore, for those simple protocols, we do not know if their
security is equivalent to the DLP (but for CDHP).
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Suitable groups

A cryptographically suitable group G must satisfy:

Representation of its elements in an easy and compact way.

Fast arithmetic, i.e. fast scalar multiplication.

DLP is computationally hard, in best case only the generic
methods works.

Consequence of Pohlig-Hellman reduction: It is important to know the
group order, or better to compute it efficiently. Furthermore, the value
or this order is used in some protocols.

The minimal amount of computations that we suppose infeasible is
≈ 280.

=⇒ The cardinality of the group order should have at least a
160-prime factor to avoid the generic attacks.
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Finite fields

Prime fields: q = p
Multiplication: product of two integers, and reduction modulo p.
Inverse: extended euclidian algorithm.

Finite fields of characteristic 2 ;

F2[x ]/(f (x)) =

{

n−1

∑
i=0

cix
i : ci ∈ F2, 0≤ i < n

}

.

Multiplication : product of polynomials with coefficients in F2, and
reduction modulo the defining polynomial f (x).
Inverse: extended euclidian algorithm for polynomials.

=⇒ Extremly efficient arithmetic on those finite fields.
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Index calculus attacks in prime fields

Index calculus is a method to compute discrete logarithms, also
called indices.

p prime, elements of Fp represented by numbers in
{0,1, . . . ,p−1}; g generator of multiplicative group.

If h ∈ Fp factors as h = h1 ·h2 · · ·hn then

h = ga1 ·ga2 · · ·gan = ga1+a2+···+an

with hi = gai .

Knowledge of the ai , i.e. the discrete logarithms of hi to base g
gives knowledge of the discrete logarithm of h to base g.

If h factors appropriately . . .
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Smooth numbers

An integer is said to be B-smooth if its decomposition in prime factors
only contains primes p ≤ B.

To evaluate the proportion of smooth numbers, we introduce the
function

φ(x ,y) = #{1≤ n ≤ x ; n is y− smooth } .

For y = 23 we obtain the following proportions:

x 100 1000 10000 100000
φ(x ,y)

x 76 % 37 % 14 % 4 %
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Subexponentiality

Definition: subexponential functions

Let N > 0,0≤ α≤ 1,c > 0.

LN(α,c) := exp
(

c(logN)α(log logN)1−α)

If α = 0, then LN(α,c) = (log N)c : polynomial in the length of N.

If α = 1, then LN(α,c) = expc(log N) = Nc : exponential in the
length of N.

We say that LN(α,c) is subexponential if 0 < α < 1.

N.B.: There exists algorithms for the ”special” integer factorization
(n = p ·q) with a subexponential running time: the fastest known
method is the Number field sieve with time complexity

O
(

exp
(

(1.923+ o(1))(log N)
1
3 (log log N)

2
3

))

where o(1) = θ(n) −→ 0 for n −→+∞.
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Smoothness theorem

Theorem fundamental

For any c > 0, when x −→+∞, then

φ(x ,Lx(
1
2 ,c))

x
∼ 1

√

Lx(
1
2 , 1

c )
∼ 1

Lx (
1
2 , 1

2c )
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Adleman’s algorithm in prime fields

Let p a prime number, g a generator of F
∗
p = (Z/pZ)∗,h ∈ 〈g〉.

Choice of the ”factors base”:
Bound of smoothness B,
FB = {pi , pi prime , pi < B} .
How to compute the DLg(pi) for the pi ∈ FB ? (pi = gDLg(pi ))

Find ”some relations”:
For a random r ∈R [0,p−2], compute gr (mod p).
If the obtained number is B-smooth, it gives ”a relation”

gr = ∏
pi∈FB

pαi
i = ∏

pi∈FB

gDLg(pi )αi = g∑pi∈FB DLg(pi)αi

such that r ≡ ∑pi∈FB
DLg(pi)αi (mod p−1) .

Iterate the last step to get at least #FB relations.
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Adleman’s algorithm . . .

Lineare algebra:
We have a linear system (in the unknown DLg(pi )) with more
equations than unknown. We solve it to obtain DLg(pi) for all pi .
This step needs to be done only once per field and generator, it
does not depend on the target DLP h = gx .

Solving the original DLP:

How now to solve the DLP for h ∈ 〈g〉, i.e. how to compute
DLg(h) ?
Choose randomly r ∈ [1,p−2] until gr ·h (mod p) is B-smooth.
Then,

gr ·h = ∏
pi∈FB

pβi
i and thus DLg(h) = ∑

pi∈FB

DLg(pi)βi − r .
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Analysis of Adleman’s algorithm

Principle

It is much easier to find some relation if B is large, however we then
need much more relation (since FB will be large too)!

We will choose B to be of the form

B = Lp

(

1

2
,ρ

)

.

From the smoothness theorem, the probability that a random element
in F

∗
p is B-smooth is

P =
1

Lp

(

1
2 , 1

2ρ

) .
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Analysis of Adleman’s algorithm

The average time we will need to find the #FB relation is:

Lp

(

1

2
,

1

2ρ

)

·Lp

(

1

2
,ρ

)

= Lp

(

1

2
,ρ+

1

2ρ

)

.

Linear algebra: The matrix representing the linear sytem is
sparse (O(log p) non zero terms in each row). We can then use
adequate algorithms with quadratic (in the length of the matrix)
running time.

The cost of the linear algebra is:

Lp

(

1

2
,ρ

)2

= Lp

(

1

2
,2ρ

)

.
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Analysis of Adleman’s algorithm

The cost of the final step (the smoothness relation of gr · · · ) is
equivalent to the cost of one smoothness relation.

The total cost of the algorithm is

Lp

(

1

2
,2ρ

)

+ Lp

(

1

2
,ρ+

1

2ρ

)

= Lp

(

1

2
,max

(

2ρ,ρ+
1

2ρ

))

.

The optimal value is obtained when ρ = 1√
2
, which gives the

complexity

Lp(
1

2
,
√

2) .

Running time with much more clever way of finding relations is

O
(

exp
(

(1.923+ o(1))(log p)
1
3 (log log p)

2
3

))
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· · · in charactersitic 2

Let q = 2n. The field with q elements Fq is isomorphic to

F2[x ]/(f (x)) =

{

n−1

∑
i=0

cix
i : ci ∈ F2, 0≤ i < n

}

.

where f ∈ F2[x ] is an irreducible polynomial of degree n.
Adleman’s algorithm can be trivially extended to such fields :

Factoring into powers of small primes is replaced by factoring into
irreducible polynomials of small degree.

Same approach works, same problem of balancing size of
factorbase (and thus complexity of the matrix step) and the
likelihood of splitting completely over the factors base.
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Cryptographic interests

1000 4000 10000

480

320

160

bit length for
DLP security in
generic groups

bit length for
DLP security
in F
∗
p

Best known attack for G = F
∗
q : Lq ( 1

3 ,c)

Best known attack for generic groups: 2n/2

For the same security level, the bit length of the group order

of generic groups beahves like the cubic root of the bit length of #F
∗
q
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Elliptic curves

Let K = Fq be the finite field with q elements. An elliptic curve over K
is given by a non-singular equation

(1) E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

where ai ∈ K . For a field extension L of K , the set of rational points of
E is

E(L) :=
{

(x ,y) ∈ L2 : (x ,y) satisfy (1)
}

∪{O } ,

where O denotes the point at infinity.

A point of E is an element of E(K̄ ) where K̄ is the algebraic closure of
K .

For any extension L of K , the set E(L) forms an abelian group with
identity element O .
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Elliptic curves: Group law in E(R)

E : y2 = x3− x

P

R

−P−R

P +R
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Elliptic curves: Group law in E(R)

E : y2 = x3− x

P

R

−P−R

P +R
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Elliptic curves: Group law in E(R)

E : y2 = x3− x

P

R

−P−R

P +R
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Elliptic curves: Group law in E(R)

E : y2 = x3− x

P

R

−P−R

P +R
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Elliptic curves: group law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ Fq

P

R

−P−R

P +R

2P

−2P

Pour (x1,y1) 6= (x2,−y2):

(x1,y1)⊕ (x2,y2) = (x3,y3)
= (λ2− x1− x2,λ(x1− x3)− y1),

avec

λ =

{

(y2− y1)/(x2− x1) si x1 6= x2,
(3x2

1 + a4)/(2y1) si x1 = x2

⇒ Addition and Doubling differ considerably.:
1 I, 2M, 1S vs. 1 I, 2M, 2S
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Projective Coordinates

P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), P⊕Q = (X3 : Y3 : Z3) on
E : Y 2Z = X 3 + a4XZ 2 + a6

Addition: P 6=±Q A = Y2Z1−Y1Z2,B = X2Z1−X1Z2

C = A2Z1Z2−B3−2B2X1Z2

X3 = BC,Z3 = B3Z1Z2

Y3 = A(B2X1Z2−C)−B3Y1Z2

Doubling: P = Q 6=−P
A = a4Z 2

1 + 3X 2
1 ,B = Y1Z1,

C = X1Y1B,D = A2−8C
X3 = 2BD,Z3 = 8B3.
Y3 = A(4C−D)−8Y 2

1 B2

No inversion is needed and the computation times are 12M + 2S for a
general addition and 7M + 5S for a doubling.
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· · · and other different coordinates systems for y2 = x3 + ax + b

système points correspondence

affine (A ) (x ,y)
projective (P ) (X ,Y ,Z ) (X/Z ,Y/Z )
jacobi (J ) (X ,Y ,Z ) (X/Z 2,Y/Z 3)
Chudnovsky jacobi (J C) (X ,Y ,Z ,Z 2,Z 3) (X/Z 2,Y/Z 3)
jacobi modifié (J m) (X ,Y ,Z ,aZ 4) (X/Z 2,Y/Z 3)

système addition doublements

affine (A ) 2M 1S 1I 2M 2S 1I
projective (P ) 12M 2S – 7M 5S –
jacobi (J ) 12M 4S – 4M 6S –
Chudnovsky jacobi (J C) 11M 3S – 5M 6S –
jacobi modifié (J m) 13M 6S – 4M 4S –

New efficient and ”complete” formulae using Edward’s model for elliptic
curves: =⇒ Lange & Berstein’s talks in two weeks

Roger Oyono The DLP and its application in Cryptography



Number of points

Hasse’s theorem

In cryptograhy, we usually consider elliptic curves over finite fields Fq.

The number of Fq-rational points of E is also finite, a bound is given by
Hasse’s theorem:

#E(Fq) = q + 1− t,

with |t| ≤ 2
√

q. The integer t is called the trace of E .
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DLP on special elliptic curves

For a ”generic” elliptic curve, the best known attack is Pollard ρ
(combined with Pohlig-Hellman).

=⇒ Elliptic curves behave like generic groups.

Although, there are some classes of specific curves with much faster
attack :

MOV Reduction

Anomalous curves

Curves with non-trivial automorphisms group

Weil descent
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MOV reduction

Definition

Let G a subgroup of E(Fq) of prime order N|#E(Fq). The MOV
degree is the smallest integer k such that N|qk −1 .

Theorem (Menezes-Okamoto-Vanstone, Frey-Rück)

The DLP in G can be reduced to the DLP in F
∗
qk .

Idea of the proof: Use the Weil pairing to embedd G in Fqk . (=⇒
Galbraith’s lectures on pairing in June).

Remark: The DLP can be solved in a subexponential running time in
Fqk . However, for a random elliptic curve E , k is very large!

For elliptic curves with trace t = 0, we then have
#E(Fp) = p + 1|p2−1 and thus k = 2. Supersingular elliptic curves
over prime fields are thus less suitable for DLP based cryptography .
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Weil descent and anomalous curves

Weil descent

In some case, the DLP in E(F2n) can be reduced in a DLP of an
hyperelliptic curve of large genus over a smaller field.

We will see that there exists subexponential attacks for large genus
curves (last lecture ”maybe”).

The curves defined over E(F2n) where n is composite are in danger
regarding this attack.

An anomalous elliptic curve is a curve over Fp with #E(Fp) = p, such
that #E(Fp)≃ (Fp,+) .

Theorem (Smart, Satoh-Araki, Semaev)

The above isomorphism can be given explicitly.

The DLP on such groups can be computed very efficiently.
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Standards

ANSI Public Key Cryptography for the Financial Services Industry
X9.62-1998 – The Elliptic Curve Digital Signature Algorithm
(ECDSA)
X9.63-1999 – Key Agrrement and Key Transport Using Elliptic
Curve Cryptography (ECIES etc.)

NIST – FDigital Signature Standard FIPS 186-2 (revision 2000)

IEEE P1363a – Standart Specifications for Public Key
Cryptography

Standarts for Efficient Cryptography Group (Certicom)

ISO 15946
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Abelian varieties

The natural generalization of elliptic curves to higher dimension are
abelian varieties.

DLP on an abelian variety over a finite field seems to be hard in
general.

Problem: difficult to obtain explicit examples.

⇒ Jacobian varieties of algebraic curves.
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Algebraic curves

Let C : f (x ,y) = 0 be an algebraic curve defined over a field K , and let
L be an extension of K

Rational points of C :

C(L) := {(x ,y) ∈ L2 : f (x ,y) = 0}

The points of C are the elements of C(K̄ )

Let K = Fq a finite field. The Frobenuis of Fq: x 7−→ xq induces a
morphism of C via

P = (x ,y) 7−→ Pq := (xq,yq)

Then
C(Fqn) = {P ∈ C(Fq)|Pqn

= P}
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Hyperelliptic curves

Let k be a field and C an algebraic complete curve defined over k ,
g := g(C) its genus.

Definition

C is said to be hyperelliptic if there exists a morphism ϕ : C −→ P
1 of

degree 2.

Explicit model

Every hyperelliptic curve C/k admits a non-singular affine model

y2 + h(x)y = f (x)

with deg(f ) ∈ {2g + 2,2g + 1} and deg(h) ≤ g.
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Example of hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 12:12:12 [Seed =1234567890]
Type ? for help. Type <Ctrl>-D to quit.

> A<x,y> := AffineSpace(GF(7),2);

> C1 := Curve(A, yˆ2-(xˆ7+x-1));

> Genus(C1);

3

> Points(C1);

{@ (1, 1), (1, 6), (4, 0), (5, 3), (5, 4), (6, 2), (6, 5) @}

> P<X,Y,Z> := ProjectiveSpace(GF(7),2);

> C2:=Curve(P, Zˆ5*Yˆ2-(Xˆ7+X*Zˆ6-Zˆ7));

> Genus(C2);

3

> Points(C2);

@ (1 : 1 : 1), (1 : 6 : 1), (4 : 0 : 1), (5 : 3 : 1), (5 : 4 : 1), (6 : 2 : 1),
(6 : 5 : 1), (0 : 1 : 0) @}

> SingularPoints(C2);
@ (0 : 1 : 0) @}
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Non-hyperelliptic curves

Definition

A non-hyperelliptic curve C is a curve for which there exists no
morphism C −→ P

1 of degree 2.

Canonical embedding

Let {ω1, · · · ,ωg} a basis of Ω1(C). The curve C is non-hyperelliptic iff
the canonical morphism

ϕ : C −→ P
g−1

P 7−→ ϕ(P) := (ω1(P), . . . ,ωg(P)),

is an embedding.
In this case, ϕ(C) is a degree 2g−2 curve of genus g.
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Example of non-hyperelliptic curves

Magma V2.14-1 Mon Feb 19 2007 15:15:22 [Seed =3629778794]
Type ? for help. Type <Ctrl>-D to quit.

> P<X,Y,Z> := ProjectiveSpace(Rationals(),2);

> C1 := Curve(P,Xˆ7 + Xˆ3*Yˆ2*Zˆ2 + Zˆ7);

> Genus(C1);

3

> phi1 := CanonicalMap(C1,P);

> phi(C1);

Curve over Rational Field defined by -X*Z + Yˆ2

> C2 := Curve(P,Yˆ3*Zˆ2-X*(X-Z)*(X-2*Z)*(X-3*Z)ˆ2);

> Genus(C2);

3

> phi2 := CanonicalMap(C2,P);

> phi2(C2);

Curve over Rational Field defined by
Xˆ3*Y - 6*Xˆ3*Z - Yˆ3*Z + 12*Yˆ2*Zˆ2 - 47*Y*Zˆ3 + 60*Zˆ4
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Equations for non-hyperelliptic curves

Petri’s theorem (1923) gives an explicit description of the image of a
non-hyperelliptic curve under the canonical embedding.
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Jacobian variety

Theorem

Let C be a curve of genus g ≥ 1 defined over a field k s.t. C(k) 6= /0.
Then, there exists a g dimensional abelian variety Jac(C) (the
jacobian of C) and a morphism (both defined over k)

Φ : C −→ Jac(C)

with the universal property:

Let h : C −→ A a morphism of C in an abelian variety A. Then there
exist an homomorphism α : Jac(C)−→ A and an element a ∈ A, s.t.
h(x) = α(Φ(x))+ a for all x ∈ C.
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Divisors

A divisor on C is a formal sum D = ∑P nPP (almost all nP = 0)
where P ∈ C(Fq).
Examples:

D1 = P1+2P2+3P3−10121P4+301P5

D2 = −7P1 −301P5+101Q1+Q2−3Q3

D1 +D2 = −6P1+2P2+3P3−10121P4 +101Q1+Q2−3Q3,

The set of all divisors forms an abelian group Div(C).

A divisor D is effectif (D ≥ 0) if nP ≥ 0 for all P.

Supp(D) := {P ∈ C(Fq) : nP 6= 0}.
Degree of a divisor: deg(D) := ∑P nP .
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Divisors

A divisor D is defined over Fq if D = Dσ for any σ ∈ Gal(Fq,Fq).

Examples:

Let P1, · · · ,P6 points of the curve C/Fq s.t.

- P1,P2,P3 ∈ C(Fq)
- P4 ∈ C(Fq2)−C(Fq)
- P5 ∈ C(Fq3)−C(Fq)

Then, the following divisors are Fq-rational

D1 := P1,D2 := P1 + P2,D3 := P4 + Pq
4 ,D4 := P5 + Pq

5 + Pq2

5 .

The divisors D6 := P4, D7 := P5 + Pq
5 are not Fq-rational.

DivFq(C) is a subgroup of Div(C).
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Principal divisors

For a function f ∈ Fq(C)∗ we associate the principal divisor (f ) defined by

(f ) = ∑
P

vP(f )P

C

P

f = 0

νP(f ) = 1

C

P

f = 0

νP(f )≥ 1
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Principal divisors: an example

The following divisor is principal:
(f ) = P1 + P2 + P3 + P4− (2Q1 + 2Q2)

C

1
f = 0

f = 0

P1 P2

P3
P4

Q1

Q2
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Linear equivalence

The principal divisor (f ) describe the zeros and poles (with
multiplicities) of f .

(f ) is defined over Fq iff f is defined over Fq.

Any principal divisor is of degree 0.

The set Princ(C) of principal divisors forms a subgroup of the set
Div0(C) of all divisors of degree zero.

Two divisors D1 and D2 are said to be equivalent if they differ
from a principal divisor. Write D1 ∼ D2.

Roger Oyono The DLP and its application in Cryptography



Jacobian of elliptic curves and group law

E : y2 = x3− x

P

R

F

Q

F

(F(x ,y)) = P +Q +R−3P∞

G

(G(x ,y)) = Q +K −2P∞

( F(x,y)
G(x,y)

) = P +Q +R−3P∞− (Q +K −2P∞) = (P−P∞)+(R−P∞)− (K −P∞)

and thus (P−P∞)+(R−P∞) ∼ (K −P∞)

K
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Picard group

Pic0
Fq

(C) is the quotient group of Div0
Fq

(C) by the subgroup of
principal divisors.

Call this the divisor class group (or Picard group).

Pic0
Fql

(C) is isomorphic to the group of Fql -valued points of the

Jacobian Jac(C) of C.

dim(Jac(C)) = gC .

Weil’s theorem implies

|#C(Fq)− (q + 1)| ≤ 2g
√

q,

(
√

q−1)2g ≤#Jac(C)(Fq)≤ (
√

q + 1)2g ,

in particular #Jac(C)(Fq)≈ qg .
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Suitable representations for divisor classes (?)

Let P1, · · · ,P100 points of the curve C/Fq . Let

D := P1 + P2 + · · ·+ P99−99P100

a degree zero divisor with support

Supp(D) = {P1, · · · ,P100}

Is it possible to find a divisor D′ ∼ D with less points on its support?
Answer: YES, it is even possible to have #Supp(D′) = MIN.
Idea: Use the Riemann Roch theorem.

Roger Oyono The DLP and its application in Cryptography
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Reduced divisors

Theorem

Let C/k be a hyperelliptic curve of genus g, P∞ a fixed k-rational point
of C. For a k-rational divisor D of degree 0, there exists a unique
positive divisor E of minimal degree m ≤ g, with P∞ /∈ Supp(E), such
that

D ∼ E−mP∞

The divisor E is called a (reduced divisor), and m its weight.

Goal

Given two reduced divisors D1−n1P∞ et D2−n2P∞, compute the
reduced representative D+−n3P∞ of the formal sum
(D1−n1P∞)+ (D2−n2P∞).

Roger Oyono The DLP and its application in Cryptography
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How to do HECC arithmetic?

P1

P2

Q1

Q2

P1

P2

Q1

Q2

−R1

−R2

R1

R2

Mirror them w.r.t. x-axis and form sum:

(P1 + P2−2∞)+ (Q1 + Q2−2∞)

∼ R1 + R2−2∞

Consider a genus 2 hyperelliptic curve,
with two reduced divisors
(P1 + P2−2∞) and (Q1 + Q2−2∞).

Consider a genus 2 hyperelliptic curve,
with two reduced divisors
(P1 + P2−2∞) and (Q1 + Q2−2∞).

There is a unique cubic which passes
through the four given points.

It intersects C in two more points.
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(P1 + P2−2∞)+ (Q1 + Q2−2∞)

∼ R1 + R2−2∞

Consider a genus 2 hyperelliptic curve,
with two reduced divisors
(P1 + P2−2∞) and (Q1 + Q2−2∞).

Consider a genus 2 hyperelliptic curve,
with two reduced divisors
(P1 + P2−2∞) and (Q1 + Q2−2∞).

There is a unique cubic which passes
through the four given points.

It intersects C in two more points.
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Mumford representation

For hyperelliptic curves y2 + h(x)y = f (x), Mumford proposed a
unique (compact) representation of reduced divisors by a pair of
two polynomials u,v s.t.























u,v ∈ Fq[x ],

u monic,

degx v < degx u ≤ g,

u(x) divides v(x)2 + h(x)v(x)− f (x).

Pi = (xi ,yi) ∈ Supp[u,v]⇔ u(xi) = 0,v(xi ) = yi with multiplicity .

Arithmetic uses “only” arithmetic on polynomials . . . but is far less
efficient than on elliptic curves (if applied directly).
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Cantor’s algorithm

Algorithm Composition & Reduction (Cantor/Koblitz)

INPUT: D1 = [u1,v1] , D2 = [u2,v2] and C : y2 + h(x)y = f (x)
OUTPUT: D1 + D2 = [uD1+D2 ,vD1+D2 ]

1. Compute d1 = gcd(u1,u2) = e1u1 + e2u2

2. Compute d = gcd(d1,v1 + v2 + h) = c1d1 + c2(v1 + v2 + h)

3. Let s1 = c1e1,s2 = c1e2,s3 = c2

4. u = u1u2
d2 v = s1u1v2+s2u2v1+s3(v1v2+ f )

d mod u

5. The result [u,v] corresponds to a semi reduced divisor.

6. Let u′ = f−vh−v2

u v′ = (−h− v) mod u′

7. if degu′ > g alors u := u′,v := v′ goto step 5

8. Make u monic

9. The result [u,v] corresponds to a reduced divisor.

Roger Oyono The DLP and its application in Cryptography



Arithmetic in Jac(C)(Fq)

genus 2

2000 Harley (car. impaire)
2001 Lange (car. arbitraire)
2001 Matsuo, Chao, Tsujii (...)







⇒ 2 inv.

2002 Miyamoto, Doi, Matsuo, Chao, Tsujii
2002 Takahashi
2002 Lange (car. arbitraire)
2002 Sugizaki, Matsuo, Chao, Tsujii

(car. paire)























⇒ 1 inv.

genus 3

2002 Kuroki, Gonda, Matsuo, Chao, Tsujii
2002 Pelzl, Guyot & Patankar

}

⇒ 1 inv.
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Addition, g = 2 (Lange)

Addition, degu1 = degu2 = 2

Input [u1 ,v1], [u2 ,v2],ui = x2 +ui1x +ui0 ,vi = vi1x + vi0
Output [u′ ,v ′] = [u1 ,v1]+ [u2 ,v2]

Step Expression Operations
1 Computation of the resultant r of u1 ,u2: 1S, 3M

z1 = u11−u21 , z2 = u20−u10, z3 = u11z1 + z2 ;
r = z2z3 + z2

1 u10;
2 Compute the ”almost inverse” of u2 modulo u1 (inv = r/u2 mod u1):

inv1 = z1 , inv0 = z3 ;
3 Compute s′ = rs ≡ (v1− v2)inv mod u1 : 5M

w0 = v10− v20 , w1 = v11− v21 , w2 = inv0w0 , w3 = inv1w1 ;
s′1 = (inv0 + inv1)(w0 +w1)−w2−w3(1+u11), s′0 = w2 −u10w3 ;

4 Compute s′′ = x + s0/s1 = x + s′0/s′1 et s1 : I, 2S, 5M

w1 = (rs′1)−1(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′21w1(= s1);
w4 = rw2(= 1/s1), w5 = w2

4 , s′′0 = s′0w2 ;

5 Compute l ′ = s′′u2 = x3 + l ′2x2 + l ′1x + l ′0: 2M

l ′2 = u21 + s′′0 , l ′1 = u21s′′0 +u20 , l ′0 = u20s′′0
6 Compute u′ = (s(l +h +2v2)− k)/u1 = x2 +u′1x +u′0 : 3M

u′0 = (s′′0 −u11)(s′′0 − z1 +h2w4)−u10 + l ′1 +(h1 +2v21)w4 +(2u21 + z1− f4)w5 ;
u′1 = 2s′′0 − z1 +h2w4−w5 ;

7 Compute v ′ ≡−h− (l + v2) mod u′ = v ′1x + v ′0 : 4M

w1 = l ′2−u′1, w2 = u′1w1 +u′0− l ′1, v ′1 = w2w3− v21−h1 +h2u′1 ;
w2 = u′0w1− l ′0, v ′0 = w2w3− v20−h0 +h2u′0 ;

total I, 3S, 22M
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Genus 3 Non-hyperelliptic curves

Equations for genus 3 non-hyperelliptic curves

ϕ(C) is a smooth plane quartic,

Conversely, any nonsingular quartic curve C in P
2(k) is a

canonical embedding of a non-hyperelliptique curve of genus 3.

Roger Oyono The DLP and its application in Cryptography



Reduced divisors

Theorem

Let C/k be a non-singular curve of genus g and D∞ be an effective
k-rational divisor of degree g. Then every divisor class has a
representative of the form

E−D∞

where E is an effective k-rational divisor of degree g. Generically, the
divisor E is unique.

Goal

For two reduced divisors D1−D∞ and D2−D∞, compute the reduced
representative D+−D∞ of (D1−D∞)+ (D2−D∞).
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Group law for non-hyperelliptic curves, g = 3

l∞
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Group law for non-hyperelliptic curves, g = 3

P∞
1 P∞

2 P∞
4P∞

3 l∞
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Group law for non-hyperelliptic curves, g = 3

R1

R2
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P∞
1 P∞

2

P1 P2

P3

Q1
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4P∞

3 l∞
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Group law for non-hyperelliptic curves, g = 3

R1

R2

R3

P∞
1

K2

P∞
2

P1 P2

P3

Q1

Q2

Q3

K3

K1

P∞
4P∞

3 l∞
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Group Law for non-hyperelliptic curves, g = 3

Let D∞ := P∞
1 + P∞

2 + P∞
3 . For an element D in Div0(C), let D+ be an

effective divisor (generically unique) such that D+−D∞ ∼ D.

Theorem

Let D1,D2 ∈ Div0
k(C). Then D1 + D2 is equivalent to a divisor

D = D+−D∞, where the points in the support of D+ are given by the
following algorithm:

1 Take the unique cubic E which goes (with multiplicity) through the
support of D+

1 ,D+
2 and P∞

1 ,P∞
2 ,P∞

4 . This cubic also crosses C in
the residual effective divisor D3.

2 Take the unique conic Q which goes through the support of D3

and P∞
1 ,P∞

2 . This conic also crosses C in the residual effective
divisor D+.
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Mumford representation

For hyperelliptic curves y2 + h(x)y = f (x), Mumford proposed a
unique (compact) representation of reduced divisors by a pair of
two polynomials u,v s.t.























u,v ∈ Fq[x ],

u monic,

degx v < degx u ≤ g,

u(x) divides v(x)2 + h(x)v(x)− f (x).

Pi = (xi ,yi) ∈ Supp[u,v]⇔ u(xi) = 0,v(xi ) = yi with multiplicity .

Not anymore true for non-hyperelliptic curves, only suitable for
(typical divisor).
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Typical divisors

For non-hyperelliptic curves of genus 3: The Mumford representation
in only useful for (typical divisors).

A typical divisor D = D+−D∞ ∈Div0
k (C) is a divisor with the following

properties:

deg(D+) = 3, D+ ≥ 0,

the three points in the support of D+ are non-collinear,

there is no point at infinity in the support of D+,

the (xi)i=1,2,3 are distinct (Pi = (xi : yi : 1) be the three points in
the support of D+).
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Mumford representation

For non-hyperelliptic curves of genus 3 :

Theorem

Let C the plane quartic with affine equation f (x ,y) = 0. A typical
reduced divisor over k can be uniquely represented by a pair of two
polynomials u,v s.t.



















u,v ∈ Fq[x ],

u monic, degx u = 3,

degx v = 2,

u(x) divides f (x ,v(x)).
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Algebraic interpretation

INPUT: D1 = [u1,v1], D2 = [u2,v2],
C/k : y3 + h1(x)y2 + h2(x)y− f4(x) = 0

Three steps: finding the cubic w , reduce −(D1 + D2), taking the
opposite.

First step: computation of the cubic.

The only step where we distinguish between addition and doubling.

In the most common case w = y2 + sy + t, where degx(s) = 2,
degx(t) = 2.

We use the fact:

w ∈ 〈y− v1,u1〉∩ 〈y− v2,u2〉 for addition.

w ∈ 〈y− v1,u1〉2 = 〈(y− v1)
2,(y − v1) ·u1,u2

1〉 for doubling.
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Algebraic interpretation

Second step: computation of −(D1 + D2).

u−(D1+D2) = normalized quotient of Res(w ,C,y) by u1 ·u2

To compute v−(D1+D2) use the relation

(t−s2−h2 +sh1) ·v−(D1+D2)≡ (st− th1− f4) mod u−(D1+D2),

Third step: computation of D1 + D2.

vD1+D2 = v−(D1+D2)

uD1+D2 = normalized quotient of

v3
D1+D2

+ v2
D1+D2

h1 + vD1+D2h2− f4

by uD1+D2
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Non-hyperelliptic Addition, g = 3

Algorithm Addition in Jac(C) (Flon-Oyono-Ritzenthaler)

INPUT: D1 = [u1,v1] , D2 = [u2,v2] et C : y3 + h1(x)y2 + h2(x)y = f4(x)
OUTPUT: D1 + D2 = [uD1+D2 ,vD1+D2 ]

1. Computation of the cubic E

Compute the inverse t1 de v1− v2 modulo u2

Determine the remainder r of (u1−u2)t1 by u2

Solve the linear system
{

degx(−v1(v1 + s)+ u1δ1) = 2 (2 eq.)
v1 + v2 + s≡ rδ1 [u2] (3 eq.)

with s,δ1 ∈ k[x], deg(s) = 2 et deg(δ1) = 1. Then

E = (y− v1)(y + v1 + s)+ u1δ1

2. Computation of the conic Q

Compute u′ := Res∗(E,C,y)/(u1u2)

Compute the inverse α1 of t− s2−h2 + sh1 modulo u′

Compute the remainder v′ of α1(st− th1− f4) by u′

3. Compute de D1 + D2

vD1+D2 := v′

uD1+D2 := ((v3 + v2h1 + vh2− f4)/(u′))∗

D1 + D2 = [uD1+D2 ,vD1+D2 ]
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Non-hyperelliptic Doubling, g = 3

Algorithm Doubling in Jac(C) (Flon-Oyono-Ritzenthaler)

INPUT: D1 = [u1,v1] and C : y3 + h1(x)y2 + h2(x)y = f4(x)
OUTPUT: 2D1 = [u2D1 ,v2D1 ]

1. Computation of the cubic E

Compute ω1 = (v3
1 + v2

1h1 + v1h2− f4)/u1

Compute the inverse t1 of ω1 modulo u1

Compute the remainder r of (3v2
1 + 2v1h1 + h2)t1 by u1

Solve the linear system
{

degx(−v1(v1 + s)+ u1δ1) = 2 (2 eq.)
v1 + v1 + s≡ rδ1 [u1] (3 eq.)

with s,δ1 ∈ k[x], deg(s) = 2 et deg(δ1) = 1. Alors

E = (y− v1)(y + v1 + s)+ u1δ1

2. Computation of the conic Q

Compute u′ := Res∗(E,C,y)/(u1u2)

Compute the inverse α1 of t− s2−h2 + sh1 modulo u′

Compute the remainder v′ of α1(st− th1− f4) by u′

3. compute de D1 + D2

vD1+D2 := v′

uD1+D2 := ((v3 + v2h1 + vh2− f4)/(u′))∗

D1 + D2 = [uD1+D2 ,vD1+D2 ]
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Explicit formulæ.

Use Karatsuba or Toom-Cook tricks to speed up the algorithm.

Cost of the algorithm:

C/k : y3 + h2(x)y− f4(x) = 0

Operation
hyperelliptic C3,4 generic quartic
of genus 3 Picard deg(h2) = 1 deg(h2) = 2 deg(h2) = 3

FOR Add 2I+130M 2I+138M 2I+145M 2I+163M

Methods Dbl 2I+152M 2I+160M 2I+167M 2I+185M

Previous Add I+70M 2I+140M 2I+147M 2I+150M

Work Dbl I+71M 2I+164M 2I+171M 2I+174M
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Comparison and implementation

Presented algorithm has geometric viewpoint; did not separate
composition from reduction like in Cantor algorithm.

Cantor algorithm and its improvements (Lange) for computing in
the Jacobian of hyperelliptic curves of genus 2 coincide with the
geometric point of view.

This geometric approach can be generalized to large genus
non-hyperelliptic curves (Oyono-Thériault (work in rogress) :
2I + 272M + 11SQ for addition, 2I + 304M + 14SQ for doubling
and 2I + 41M + 3SQ for inverse in the Jacobian of C3,5-curves).
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Scalar multiplication: −2-adic expansion

Using the 2-adic expansion of 7: [7]g = [2](([2]g)+g)+g.

Better, use the −2-adic expansion : [7]g :=−(−[2](−[2](−[2]g))+g).

This method is useful for groups where computing −(D1 +D2) is faster than computing
D1 +D2. This method is in particular interesting for non-hyperelliptic curves.

Algorithm −2-adic Expansion.

INPUT: m = ∑l(m)−1
i=0 mi2i ∈ N, mi ∈ {0,±1}, g ∈ G

OUTPUT: e := mg

1. Precompute and store −g

2. Compute l(m) and w(m) = #{mi | mi 6= 0}
3. Put e := (−1) f g, where f := l(m)+ w(m) mod 2

4. for i = l(m)−2 to 0 do

e :=−2e

f := 1− f

if mi 6= 0 then

e :=−(e +(−1) f mig)

f := 1− f

5. return e
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Smooth divisors

Lemma

Let D = [u(x),v(x)] a divisor class in Jac (C)(Fq). Let u(x) = ∏ui(x)
the decomposition of u in irreducible factors in Fq[x ]. Let vi(x) = v(x)
(mod ui(x)). Then

D = ∑[ui(x),vi(x)] .

This ”induces” a kind of unique factorisation in Jac (C)(Fq) :

Definition

A divisor class D = [u(x),v(x)] is said to be prime if u(x) is
irreducible.

A divisor is said to be B-smooth if the irreducible factors of u(x)
have degree ≤ B.
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Index calculus: Gaudry’s algorithm

INPUT:

A genus g hyperelliptic curve C ,

D1 ∈ Jac (C)(Fq), and D2 ∈ 〈D1〉 ,
n = ord(D1) (supposed to be prime).

ALGORITHM TO SOLVE THE DLP IN 〈D1〉:
Choose a good smothness bound B ≤ g .

Construct a factor base

FB = {D ∈ Jac (C)(Fq) : D prime, with deg u(x)≤ B} .

Find relations (at least #FB)

Si = aiD1 + biD2, ai ,bi ∈R [1,n] ,

where Si factors in FB.
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Index calculus: Gaudry’s algorithm

Linear algebra: Find a linear combination (γi)

∑γiSi = 0 = (∑γiai)D1 +(∑γibi)D2 .

Deduce the DLP :

DLD1(D2) =−∑γiai

∑γibi
(mod n) .
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Analysis: Gaudry’s algorithm

HEURISTIC: The polynomials u(x) associate to the divisor classes
Si ∈ FB behave like purely random polynomials.

=⇒ The probability of smoothness follows the subexponential law.

Choice of the smoothness bound (Gaudry-Enge):

B = logq

(

Lqg

(

1

2
,ρ

))

.

In this case the cost of the algorithm will be:

Lqg

(

1

2
,ρ

)

.
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Analysis: Small genus curves

CHEATING: B is an integer (its a degree)!

The above method is subexponential if g > logq.

If g is small (compared to logq), then the optimal value of B tends to 0.
However, we must choose B ≥ 1.
=⇒Wrong analysis for small g.

Analysis for g fixed: and q −→+∞ :

Take B = 1, then #FB ≈ q .

The proportion of smooth elements is 1
g! .

Total costs: O(gq2 + g!q) , and if g < logq the time is dominated by
O(gq2)
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Costs for Index calculus

Gaudry et al. (2000-2006) provided a modified version of the index
calculus (using large / double large primes variation) to get an
improvement for the DLP on curves of small genus g > 2:

O
(

(log q)g2q2− 2
g

)

group operations for solving the DLP.

g 1 2 3 4 5 6

Pollard q1/2 q1 q3/2 q2 q5/2 q3

Index (original) q2 q2 q2 q2 q2 q2

index (variation) q4/3 q3/2 q8/5 q5/3
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Non-hyperelliptic index calculus

Previous Index calulus attacks carrie over nicely to non-hyperelliptic
curves.
Furthermore, Diem (2007) went back to the ideas of Adleman,
DeMarrais and Huang: the complexity of its method (for degree d
curves) is

O
(

q2− 2
d−2

)

,

and is thus O(q) for smooth plane quartics (non-hyperelliptic curves of
genus 3).

On the other hand, B. smith (2007) developed a method using
isogenies that for 18,57% genus 3 hyperelliptic curves allows one to
transfer the DLP to a non-hyperelliptic curve.
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Thank you for your attention!
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