BOUNDARY BEHAVIOR OF OPTIMAL APPROXIMANTS

DANIEL SECO (ICMAT)

We compute the Taylor coefficients of $p_n f - 1$, where p_n denotes the optimal approximant of degree n to 1/f in a Hilbert space of analytic functions over the unit disc \mathbb{D} , and f is a polynomial of degree d with d simple zeros. As an application, we show that the sequence $p_n f - 1$ is uniformly bounded and, if f has no zeros inside the disc, the values of $p_n f - 1$ converge locally uniformly towards 0 at every point of the boundary except the zeros of f.

1