A generalized Hilbert operator acting on mean Lipschitz spaces

Noel Merchán Universidad de Málaga, Spain

Madrid International Workshop on Operator Theory and Function Spaces Madrid, Spain. October 16, 2018

ヘロト ヘワト ヘビト ヘビト

Index

2

- Generalized Hilbert matrix
 - Hilbert matrix
 - A generalized Hilbert matrix
 - Integral operator
 - Carleson measures
- 3 Mean Lipschitz spaces
- 4 \mathcal{H}_{μ} acting on mean Lipschitz spaces

・ 同 ト ・ ヨ ト ・ ヨ ト

The unit disc and the unit circle

 $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}, \text{ the unit disc.} \\ \mathbb{T} = \{\xi \in \mathbb{C} : |\xi| = 1\}, \text{ the unit circle.} \end{cases}$

Spaces of analytic functions in the unit disc

 $\mathcal{H}ol(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

イロン 不得 とくほ とくほ とうほ

The unit disc and the unit circle

 $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}, \text{ the unit disc.} \\ \mathbb{T} = \{\xi \in \mathbb{C} : |\xi| = 1\}, \text{ the unit circle.} \end{cases}$

Spaces of analytic functions in the unit disc

 $\mathcal{H}ol(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

イロン 不得 とくほ とくほ とうほ

The unit disc and the unit circle

$$\begin{split} \mathbb{D} &= \{z \in \mathbb{C} : |z| < 1\}, \text{ the unit disc.} \\ \mathbb{T} &= \{\xi \in \mathbb{C} : |\xi| = 1\}, \text{ the unit circle.} \end{split}$$

Spaces of analytic functions in the unit disc

 $\mathcal{H}ol(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

イロン 不得 とくほ とくほ とうほ

The unit disc and the unit circle

$$\begin{split} \mathbb{D} &= \{z \in \mathbb{C} : |z| < 1\}, \text{ the unit disc.} \\ \mathbb{T} &= \{\xi \in \mathbb{C} : |\xi| = 1\}, \text{ the unit circle.} \end{split}$$

Spaces of analytic functions in the unit disc

 $\mathcal{H}ol(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The unit disc and the unit circle

$$\begin{split} \mathbb{D} &= \{z \in \mathbb{C} : |z| < 1\}, \text{ the unit disc.} \\ \mathbb{T} &= \{\xi \in \mathbb{C} : |\xi| = 1\}, \text{ the unit circle.} \end{split}$$

Spaces of analytic functions in the unit disc

 $\mathcal{H}ol(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Hardy spaces

If 0 < r < 1 and $f \in Hol(\mathbb{D})$, we set

$$M_{p}(r, f) = \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{p} dt\right)^{1/p}, \ 0
$$M_{\infty}(r, f) = \sup_{|z|=r} |f(z)|.$$$$

If $0 , we consider the Hardy spaces <math>H^p$,

$$H^p = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \|f\|_{H^p} \stackrel{\text{def}}{=} \sup_{0 < r < 1} M_p(r, f) < \infty \right\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Hardy spaces

If 0 < r < 1 and $f \in Hol(\mathbb{D})$, we set

$$M_p(r, f) = \left(rac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p \, dt
ight)^{1/p}, \ 0 $M_\infty(r, f) = \sup_{|z|=r} |f(z)|.$$$

If $0 , we consider the Hardy spaces <math>H^p$,

$$H^p = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \|f\|_{H^p} \stackrel{\text{def}}{=} \sup_{0 < r < 1} M_p(r, f) < \infty \right\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Hardy spaces

If 0 < r < 1 and $f \in Hol(\mathbb{D})$, we set

$$M_p(r, f) = \left(rac{1}{2\pi}\int_0^{2\pi} |f(re^{it})|^p \, dt
ight)^{1/p}, \ 0 $M_\infty(r, f) = \sup_{|z|=r} |f(z)|.$$$

If $0 , we consider the Hardy spaces <math>H^p$,

$$H^p = \left\{ f \in \mathcal{H}ol(\mathbb{D}) \, : \, \|f\|_{H^p} \stackrel{\mathsf{def}}{=} \sup_{0 < r < 1} M_p(r, f) < \infty
ight\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

BMOA

$$BMOA = \left\{ f \in H^1 : f\left(e^{i\theta}\right) \in BMO \right\}.$$

Bloch space

$$\mathcal{B} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty
ight\}.$$

$H^{\infty} \subset BMOA \subset \mathcal{B}.$

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

BMOA

$$BMOA = \left\{ f \in H^1 : f\left(e^{i\theta}\right) \in BMO \right\}.$$

Bloch space

$$\mathcal{B} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty
ight\}.$$

$H^{\infty} \subset BMOA \subset \mathcal{B}.$

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

BMOA

$$BMOA = \left\{ f \in H^2 : \sup_{a \in \mathbb{D}} \| f \circ \varphi_a - f(a) \|_{H^2} < \infty \right\}.$$

Where $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}, a \in \mathbb{D}$.

Bloch space

$$\mathcal{B} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty \right\}$$

$H^{\infty} \subset BMOA \subset \mathcal{B}.$

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

BMOA

$$BMOA = \left\{ f \in H^2 : \sup_{a \in \mathbb{D}} \| f \circ \varphi_a - f(a) \|_{H^2} < \infty \right\}.$$

Where $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}, a \in \mathbb{D}$.

Bloch space

$$\mathcal{B} = \left\{ f \in \mathcal{Hol}(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty
ight\}.$$

$H^{\infty} \subset BMOA \subset \mathcal{B}.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

BMOA

$$BMOA = \left\{ f \in H^2 : \sup_{a \in \mathbb{D}} \| f \circ \varphi_a - f(a) \|_{H^2} < \infty \right\}.$$

Where $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$, $a \in \mathbb{D}$.

Bloch space

$$\mathcal{B} = \left\{ f \in \mathcal{Hol}(\mathbb{D}) : \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty
ight\}.$$

$$H^{\infty} \subset BMOA \subset \mathcal{B}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix

$$\mathcal{H} = \left(\frac{1}{n+k+1}\right)_{n,k\geq 0}$$

$$\mathcal{H} = \begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 & \dots \\ 1/2 & 1/3 & 1/4 & 1/5 & \dots \\ 1/3 & 1/4 & 1/5 & 1/6 & \dots \\ 1/4 & 1/5 & 1/6 & 1/7 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

ヘロト 人間 とくほとくほとう

∃ <2 <</p>

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix

Let \mathcal{H} be the Hilbert matrix,

$$\mathcal{H} = \left(\frac{1}{n+k+1}\right)_{n,k\geq 0}.$$
$$\mathcal{H} = \begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 & \dots \\ 1/2 & 1/3 & 1/4 & 1/5 & \dots \\ 1/3 & 1/4 & 1/5 & 1/6 & \dots \\ 1/4 & 1/5 & 1/6 & 1/7 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

ヘロト 人間 とくほとくほとう

∃ 9900

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix

Let \mathcal{H} be the Hilbert matrix,

$$\mathcal{H} = \left(\frac{1}{n+k+1}\right)_{n,k\geq 0}.$$
$$\mathcal{H} = \begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 & \dots \\ 1/2 & 1/3 & 1/4 & 1/5 & \dots \\ 1/3 & 1/4 & 1/5 & 1/6 & \dots \\ 1/4 & 1/5 & 1/6 & 1/7 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

ヘロト 人間 とくほとくほとう

∃ <2 <</p>

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix

The Hilbert matrix ${\cal H}$ can be viewed as an operator between sequence spaces.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

<ロト <回 > < 注 > < 注 > 、

ъ

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix

The Hilbert matrix \mathcal{H} can be viewed as an operator between sequence spaces.

ヘロト ヘアト ヘビト ヘビト

ъ

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix

The Hilbert matrix \mathcal{H} can be viewed as an operator between sequence spaces.

$$\mathcal{H}\left(\{a_n\}_{n=0}^{\infty}\right) = \begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 & \dots \\ 1/2 & 1/3 & 1/4 & 1/5 & \dots \\ 1/3 & 1/4 & 1/5 & 1/6 & \dots \\ 1/4 & 1/5 & 1/6 & 1/7 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \end{pmatrix},$$
$$\{a_n\}_{n=0}^{\infty} \mapsto \left\{\sum_{k=0}^{\infty} \frac{a_k}{n+k+1}\right\}_{n=0}^{\infty}$$

イロト 不得 とくほ とくほとう

ъ

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix

The Hilbert matrix \mathcal{H} can be viewed as an operator between sequence spaces.

$$\mathcal{H}\left(\{a_n\}_{n=0}^{\infty}\right) = \begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 & \dots \\ 1/2 & 1/3 & 1/4 & 1/5 & \dots \\ 1/3 & 1/4 & 1/5 & 1/6 & \dots \\ 1/4 & 1/5 & 1/6 & 1/7 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \end{pmatrix},$$
$$\{a_n\}_{n=0}^{\infty} \mapsto \left\{\sum_{k=0}^{\infty} \frac{a_k}{n+k+1}\right\}_{n=0}^{\infty}.$$

イロト イポト イヨト イヨト

э

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

In the same way we can consider \mathcal{H} as an operator in $\mathcal{H}ol(\mathbb{D})$ multiplicating the matrix by the sequence of Taylor coefficients of a function $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{H}ol(\mathbb{D}).$

We define formally the operator in $Hol(\mathbb{D})$

$$\mathcal{H}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \frac{a_k}{n+k+1} \right) z^n.$$

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

イロト イポト イヨト イヨト

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

In the same way we can consider \mathcal{H} as an operator in $\mathcal{H}ol(\mathbb{D})$ multiplicating the matrix by the sequence of Taylor coefficients of a function $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{H}ol(\mathbb{D}).$

We define formally the operator in $\mathcal{H}ol(\mathbb{D})$

$$\mathcal{H}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \frac{a_k}{n+k+1} \right) z^n.$$

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

ヘロト 人間 ト ヘヨト ヘヨト

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

In the same way we can consider \mathcal{H} as an operator in $\mathcal{H}ol(\mathbb{D})$ multiplicating the matrix by the sequence of Taylor coefficients of a function $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{H}ol(\mathbb{D}).$

We define formally the operator in $\mathcal{H}ol(\mathbb{D})$

$$\mathcal{H}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \frac{a_k}{n+k+1} \right) z^n.$$

ヘロト ヘアト ヘビト ヘビト

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix as an operator

The operator \mathcal{H} is well defined on H^1 . The operator $\mathcal{H} : H^p \to H^p$ is bounded if 1 ,(Diamantopoulos & Siskakis, 2000). $Dostanić, Jevtić & Vukotić (2008) found the exact norm of <math>\mathcal{H}$ as an operator from H^p to H^p (1). $However, <math>\mathcal{H}$ is not bounded on H^1 and neither on H^∞ .

ヘロト ヘアト ヘビト ヘビト

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix as an operator

The operator \mathcal{H} is well defined on H^1 .

The operator $\mathcal{H} : H^p \to H^p$ is bounded if 1 ,(Diamantopoulos & Siskakis, 2000). $Dostanić, Jevtić & Vukotić (2008) found the exact norm of <math>\mathcal{H}$ as an operator from H^p to H^p (1). $However, <math>\mathcal{H}$ is not bounded on H^1 and neither on H^∞ .

ヘロト ヘアト ヘビト ヘビト

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix as an operator

The operator \mathcal{H} is well defined on H^1 . The operator $\mathcal{H} : H^p \to H^p$ is bounded if 1 ,(Diamantopoulos & Siskakis, 2000). $Dostanić, Jevtić & Vukotić (2008) found the exact norm of <math>\mathcal{H}$ as an operator from H^p to H^p (1). $However, <math>\mathcal{H}$ is not bounded on H^1 and neither on H^∞ .

ヘロト 人間 ト ヘヨト ヘヨト

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix as an operator

The operator \mathcal{H} is well defined on H^1 . The operator $\mathcal{H} : H^p \to H^p$ is bounded if 1 ,(Diamantopoulos & Siskakis, 2000). $Dostanić, Jevtić & Vukotić (2008) found the exact norm of <math>\mathcal{H}$ as an operator from H^p to H^p (1).

However, ${\mathcal H}$ is not bounded on H^1 and neither on $H^\infty.$

イロト イポト イヨト イヨト

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Hilbert matrix as an operator

The operator \mathcal{H} is well defined on H^1 . The operator $\mathcal{H} : H^p \to H^p$ is bounded if 1 ,(Diamantopoulos & Siskakis, 2000). $Dostanić, Jevtić & Vukotić (2008) found the exact norm of <math>\mathcal{H}$ as an operator from H^p to H^p (1). $However, <math>\mathcal{H}$ is not bounded on H^1 and neither on H^∞ .

イロト 不得 とくほ とくほとう

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

A generalized Hilbert matrix

Let μ be a finite positive Borel measure on [0, 1). Let $\mathcal{H}_{\mu} = (\mu_{n,k})_{n,k\geq 0}$ be the **Hankel matrix** with entries

$$\mu_{n,k}=\int_{[0,1)}t^{n+k}\,d\mu(t).$$

$$\mathcal{H}_{\mu} = \begin{pmatrix} \mu_{0} & \mu_{1} & \mu_{2} & \mu_{3} & \cdots \\ \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} & \cdots \\ \mu_{2} & \mu_{3} & \mu_{4} & \mu_{5} & \cdots \\ \mu_{3} & \mu_{4} & \mu_{5} & \mu_{6} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If μ is the Lebesgue measure on the interval [0, 1) we get the classical Hilbert matrix.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

A generalized Hilbert matrix

Let μ be a finite positive Borel measure on [0, 1). Let $\mathcal{H}_{\mu} = (\mu_{n,k})_{n,k\geq 0}$ be the **Hankel matrix** with entries

$$\mu_{n,k}=\int_{[0,1)}t^{n+k}\,d\mu(t).$$

$$\mathcal{H}_{\mu} = \begin{pmatrix} \mu_{0} & \mu_{1} & \mu_{2} & \mu_{3} & \cdots \\ \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} & \cdots \\ \mu_{2} & \mu_{3} & \mu_{4} & \mu_{5} & \cdots \\ \mu_{3} & \mu_{4} & \mu_{5} & \mu_{6} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If μ is the Lebesgue measure on the interval [0, 1) we get the classical Hilbert matrix.

ロアスロアスモアスモア

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

A generalized Hilbert matrix

Let μ be a finite positive Borel measure on [0, 1). Let $\mathcal{H}_{\mu} = (\mu_{n,k})_{n,k \ge 0}$ be the **Hankel matrix** with entries

$$\mu_{n,k}=\int_{[0,1)}t^{n+k}\,d\mu(t).$$

$$\mathcal{H}_{\mu} = \begin{pmatrix} \mu_{0} & \mu_{1} & \mu_{2} & \mu_{3} & \cdots \\ \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} & \cdots \\ \mu_{2} & \mu_{3} & \mu_{4} & \mu_{5} & \cdots \\ \mu_{3} & \mu_{4} & \mu_{5} & \mu_{6} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If μ is the Lebesgue measure on the interval [0, 1) we get the classical Hilbert matrix.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

A generalized Hilbert matrix

Let μ be a finite positive Borel measure on [0, 1). Let $\mathcal{H}_{\mu} = (\mu_{n,k})_{n,k \ge 0}$ be the **Hankel matrix** with entries

$$\mu_{n,k}=\int_{[0,1)}t^{n+k}\,d\mu(t).$$

$$\mathcal{H}_{\mu} = \begin{pmatrix} \mu_{0} & \mu_{1} & \mu_{2} & \mu_{3} & \cdots \\ \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} & \cdots \\ \mu_{2} & \mu_{3} & \mu_{4} & \mu_{5} & \cdots \\ \mu_{3} & \mu_{4} & \mu_{5} & \mu_{6} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If μ is the Lebesgue measure on the interval [0, 1) we get the classical Hilbert matrix.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

A generalized Hilbert matrix

Let μ be a finite positive Borel measure on [0, 1). Let $\mathcal{H}_{\mu} = (\mu_{n,k})_{n,k \ge 0}$ be the **Hankel matrix** with entries

$$\mu_{n,k}=\int_{[0,1)}t^{n+k}\,d\mu(t).$$

$$\mathcal{H}_{\mu} = \begin{pmatrix} \mu_{0} & \mu_{1} & \mu_{2} & \mu_{3} & \cdots \\ \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} & \cdots \\ \mu_{2} & \mu_{3} & \mu_{4} & \mu_{5} & \cdots \\ \mu_{3} & \mu_{4} & \mu_{5} & \mu_{6} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

If μ is the Lebesgue measure on the interval [0, 1) we get the classical Hilbert matrix.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

The matrix \mathcal{H}_{μ} induces formally an operator on $\mathcal{H}ol(\mathbb{D})$ in the same way than \mathcal{H} :

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \mu_{n,k} a_k\right) z^n.$$

イロト 不得 とくほ とくほとう
Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

The matrix \mathcal{H}_{μ} induces formally an operator on $\mathcal{H}ol(\mathbb{D})$ in the same way than \mathcal{H} :

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \mu_{n,k} \mathbf{a}_k \right) z^n.$$

イロト 不得 とくほ とくほとう

3

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Integral operator

For a finite positive Borel measure on [0, 1) μ we also define the integral operator

$$I_{\mu}(f)(z) = \int_{[0,1)} \frac{f(t)}{1 - tz} d\mu(t),$$

when the right side has sense and it defines an analytic function.

 \mathcal{H}_{μ} and I_{μ} are closely related. If $f \in \mathcal{H}ol(\mathbb{D})$ is good enough then $\mathcal{H}_{\mu}(f) = I_{\mu}(f)$.

イロト 不得 とくほ とくほ とう

3

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Integral operator

For a finite positive Borel measure on [0, 1) μ we also define the integral operator

$$I_{\mu}(f)(z) = \int_{[0,1)} \frac{f(t)}{1-tz} d\mu(t),$$

when the right side has sense and it defines an analytic function.

 \mathcal{H}_{μ} and I_{μ} are closely related. If $f \in \mathcal{H}ol(\mathbb{D})$ is good enough then $\mathcal{H}_{\mu}(f) = I_{\mu}(f)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Integral operator

For a finite positive Borel measure on [0, 1) μ we also define the integral operator

$$I_{\mu}(f)(z) = \int_{[0,1)} \frac{f(t)}{1-tz} d\mu(t),$$

when the right side has sense and it defines an analytic function.

 \mathcal{H}_{μ} and I_{μ} are closely related. If $f \in \mathcal{H}ol(\mathbb{D})$ is good enough then $\mathcal{H}_{\mu}(f) = I_{\mu}(f)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Definition

Let *I* be an interval of \mathbb{T} . We define the Carleson square associated to *I* as $S(I) = \{re^{i\theta} : e^{i\theta} \in I, \quad 1 - \frac{|I|}{2\pi} \le r < 1\}.$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Definition

Let I be an interval of \mathbb{T} . We define the Carleson square

associated to *I* as $S(I) = \{ re^{i\theta} : e^{i\theta} \in I, \quad 1 - \frac{|I|}{2\pi} \le r < 1 \}.$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Definition

Let *I* be an interval of \mathbb{T} . We define the Carleson square associated to *I* as $S(I) = \{re^{i\theta} : e^{i\theta} \in I, \quad 1 - \frac{|I|}{2\pi} \le r < 1\}.$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Definition

Let *I* be an interval of \mathbb{T} . We define the Carleson square associated to *I* as

 $S(I) = \{ re^{i\theta} : e^{i\theta} \in I, \quad 1 - \frac{|I|}{2\pi} \le r < 1 \}.$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Definition

Let μ be a finite measure on \mathbb{D} . μ is a Carleson measure if there is a constant C > 0 such that

 $\mu(S(I)) \leq C|I|$ for every $I \subset \mathbb{T}$ interval.

Theorem (Carleson, 1962)

Let μ be a finite measure on \mathbb{D} . Then μ is a Carleson measure if and only if there exist a constant C > 0 such that

 $\int_{\mathbb{D}} |f(z)| d\mu(z) \leq C \|f\|_{H^1} \quad \text{for all } f \in H^1.$

イロト 不得 トイヨト イヨト 二日 二

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Definition

Let μ be a finite measure on \mathbb{D} . μ is a Carleson measure if there is a constant C > 0 such that

 $\mu(S(I)) \leq C|I|$ for every $I \subset \mathbb{T}$ interval.

Theorem (Carleson, 1962)

Let μ be a finite measure on \mathbb{D} . Then μ is a Carleson measure if and only if there exist a constant C > 0 such that

 $\int_{\mathbb{D}} |f(z)| d\mu(z) \leq C \|f\|_{H^1} \quad \text{for all } f \in H^1.$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Definition

Let μ be a finite measure on \mathbb{D} . μ is a Carleson measure if there is a constant C > 0 such that

 $\mu(S(I)) \leq C|I|$ for every $I \subset \mathbb{T}$ interval.

Theorem (Carleson, 1962)

Let μ be a finite measure on \mathbb{D} . Then μ is a Carleson measure if and only if there exist a constant C > 0 such that

$$\int_{\mathbb{D}} |f(z)| d\mu(z) \leq C \|f\|_{H^1} \quad \text{for all } f \in H^1.$$

ヘロン 人間 とくほ とくほ とう

3

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Logarithmic Carleson measures

Let μ be a positive Borel measure on \mathbb{D} , $0 \le \alpha < \infty$, and $0 < s < \infty$ we say that μ is an α -logarithmic *s*-Carleson measure if there exists a positive constant *C* such that

 $\mu\left(S(I)\right)\left(\lograc{2\pi}{|I|}
ight)^{lpha}\leq C|I|^{s}, ext{ for any interval }I\subset\mathbb{T}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Logarithmic Carleson measures

Let μ be a positive Borel measure on \mathbb{D} , $0 \le \alpha < \infty$, and $0 < s < \infty$ we say that μ is an α -logarithmic *s*-Carleson measure if there exists a positive constant *C* such that

$$\mu\left(\mathcal{S}(I)\right)\left(\lograc{2\pi}{|I|}
ight)^{lpha}\leq C|I|^{s}, ext{ for any interval }I\subset\mathbb{T}.$$

ヘロト ヘアト ヘビト ヘビト

1

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Widom (1966) and Power (1980) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^2 into itself.

Galanopoulos and Peláez (2010) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) in the Hardy space H^1 .

Chatzifountas, Girela and Peláez (2013) described those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^{p} into H^{q} with $0 < p, q < \infty$.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Widom (1966) and Power (1980) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^2 into itself.

Galanopoulos and Peláez (2010) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) in the Hardy space H^1 .

Chatzifountas, Girela and Peláez (2013) described those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^p into H^q with $0 < p, q < \infty$.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Widom (1966) and Power (1980) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^2 into itself.

Galanopoulos and Peláez (2010) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) in the Hardy space H^1 .

Chatzifountas, Girela and Peláez (2013) described those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^{p} into H^{q} with $0 < p, q < \infty$.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Widom (1966) and Power (1980) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^2 into itself.

Galanopoulos and Peláez (2010) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) in the Hardy space H^1 .

Chatzifountas, Girela and Peláez (2013) described those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^{p} into H^{q} with $0 < p, q < \infty$.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Widom (1966) and Power (1980) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^2 into itself.

Galanopoulos and Peláez (2010) characterized those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) in the Hardy space H^1 .

Chatzifountas, Girela and Peláez (2013) described those positive Borel measures on [0, 1) such that \mathcal{H}_{μ} is bounded (or compact) from H^{p} into H^{q} with $0 < p, q < \infty$.

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Theorem (Girela, M.)

Let μ be a positive Borel measure on [0, 1) such that $\int_{[0,1)} \log \frac{2}{1-t} d\mu(t) < \infty$. Then the following three conditions are equivalent:

(i) The operator I_{μ} is bounded from \mathcal{B} into *BMOA*.

(ii) The operator I_{μ} is bounded from *BMOA* into itself.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure.

Moreover, if (i) holds, then the operator \mathcal{H}_{μ} is also well defined on the Bloch space and

 $\mathcal{H}_{\mu}(f) \ = \ I_{\mu}(f), \quad ext{for all } f \in \mathcal{B},$

and hence the operator \mathcal{H}_{μ} is bounded from $\mathcal B$ into *BMOA*.

イロト イポト イヨト イヨト

ъ

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Theorem (Girela, M.)

Let μ be a positive Borel measure on [0, 1) such that $\int_{[0,1)} \log \frac{2}{1-t} d\mu(t) < \infty$. Then the following three conditions are equivalent:

(i) The operator I_{μ} is bounded from \mathcal{B} into *BMOA*.

(ii) The operator I_{μ} is bounded from *BMOA* into itself.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure.

Moreover, if (i) holds, then the operator \mathcal{H}_{μ} is also well defined on the Bloch space and

 $\mathcal{H}_{\mu}(f) \ = \ I_{\mu}(f), \quad ext{for all } f \in \mathcal{B},$

and hence the operator \mathcal{H}_{μ} is bounded from $\mathcal B$ into BMOA.

ヘロア 人間 アメヨア 人口 ア

ъ

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Theorem (Girela, M.)

Let μ be a positive Borel measure on [0, 1) such that $\int_{[0,1)} \log \frac{2}{1-t} d\mu(t) < \infty$. Then the following three conditions are equivalent:

(i) The operator I_{μ} is bounded from \mathcal{B} into *BMOA*.

(ii) The operator I_{μ} is bounded from *BMOA* into itself.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure.

Moreover, if (i) holds, then the operator \mathcal{H}_{μ} is also well defined on the Bloch space and

$$\mathcal{H}_{\mu}(f) \,=\, \mathit{I}_{\mu}(f), \quad ext{for all } f \in \mathcal{B},$$

and hence the operator \mathcal{H}_{μ} is bounded from \mathcal{B} into *BMOA*.

くロト (過) (目) (日)

э

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Q_s spaces

For $0 \le s < \infty$ we define the space Q_s as

$$Q_s = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1 - |\varphi_a(z)|^2)^s \, dA(z) < \infty \right\}.$$

$\mathcal{D} \subsetneq \mathcal{Q}_{s_1} \subsetneq \mathcal{Q}_{s_2} \subsetneq \textit{BMOA} = \mathcal{Q}_1 \subsetneq \mathcal{B} = \mathcal{Q}_s, \quad 0 < s_1 < s_2 < 1 < s.$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Q_s spaces

For $0 \leq s < \infty$ we define the space Q_s as

$$Q_s = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1 - |\varphi_a(z)|^2)^s \, dA(z) < \infty \right\}.$$

 $\mathcal{D} \subsetneq \mathcal{Q}_{s_1} \subsetneq \mathcal{Q}_{s_2} \subsetneq \textit{BMOA} = \mathcal{Q}_1 \subsetneq \mathcal{B} = \mathcal{Q}_s, \quad 0 < s_1 < s_2 < 1 < s.$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Q_s spaces

For $0 \leq s < \infty$ we define the space Q_s as

$$Q_s = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1 - |\varphi_a(z)|^2)^s \, dA(z) < \infty \right\}.$$

 $\mathcal{D} \subsetneq \textit{Q}_{s_1} \subsetneq \textit{Q}_{s_2} \subsetneq \textit{BMOA} = \textit{Q}_1 \subsetneq \mathcal{B} = \textit{Q}_s, \quad 0 < s_1 < s_2 < 1 < s.$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Theorem (Girela, M.)

Let μ be a positive Borel measure on [0, 1) and let

 $0 < s_1, s_2 < \infty$. Then the following conditions are equivalent.

- (i) The operator I_{μ} is well defined in Q_{s_1} and, furthermore, it is a bounded operator from Q_{s_1} into Q_{s_2} .
- (ii) The operator \mathcal{H}_{μ} is well defined in Q_{s_1} and, furthermore, it is a bounded operator from Q_{s_1} into Q_{s_2} .
- (iii) The measure μ is a 1-logarithmic 1-Carleson measure.

イロト イポト イヨト イヨト

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

Theorem (Girela, M.)

Let μ be a positive Borel measure on [0, 1) and let

 $0 < s_1, s_2 < \infty$. Then the following conditions are equivalent.

- (i) The operator I_{μ} is well defined in Q_{s_1} and, furthermore, it is a bounded operator from Q_{s_1} into Q_{s_2} .
- (ii) The operator \mathcal{H}_{μ} is well defined in Q_{s_1} and, furthermore, it is a bounded operator from Q_{s_1} into Q_{s_2} .
- (iii) The measure μ is a 1-logarithmic 1-Carleson measure.

ヘロン 人間 とくほ とくほ とう

1

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

$$\Lambda_{1/2}^2 = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_2(r, f') = O\left(\frac{1}{(1-r)^{1/2}}\right) \right\}.$$

Theorem (Girela, M.)

Let μ be a positive Borel measure on [0, 1) and let X be a Banach space of analytic functions in \mathbb{D} with $\Lambda_{1/2}^2 \subset X \subset \mathcal{B}$. Then the following conditions are equivalent.

- (i) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into the Bloch space \mathcal{B} .
- (ii) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into $\Lambda_{1/2}^2$.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure. (iv) $\int_{[0,1)} t^n \log \frac{1}{1-t} d\mu(t) = O(\frac{1}{n}).$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

$$\Lambda_{1/2}^2 = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_2(r, f') = O\left(\frac{1}{(1-r)^{1/2}}\right) \right\}.$$

Theorem (Girela, M.)

Let μ be a positive Borel measure on [0, 1) and let X be a Banach space of analytic functions in \mathbb{D} with $\Lambda_{1/2}^2 \subset X \subset \mathcal{B}$. Then the following conditions are equivalent.

- (i) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into the Bloch space \mathcal{B} .
- (ii) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into $\Lambda_{1/2}^2$.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure. (iv) $\int_{[0,1)} t^n \log \frac{1}{1-t} d\mu(t) = O(\frac{1}{n}).$

Hilbert matrix A generalized Hilbert matrix Integral operator Carleson measures

$$\Lambda_{1/2}^2 = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_2(r, f') = O\left(\frac{1}{(1-r)^{1/2}}\right) \right\}.$$

Theorem (Girela, M.)

Let μ be a positive Borel measure on [0, 1) and let X be a Banach space of analytic functions in \mathbb{D} with $\Lambda_{1/2}^2 \subset X \subset \mathcal{B}$. Then the following conditions are equivalent.

- (i) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into the Bloch space \mathcal{B} .
- (ii) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into $\Lambda_{1/2}^2$.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure. (iv) $\int_{[0,1)} t^n \log \frac{1}{1-t} d\mu(t) = O(\frac{1}{n}).$

Integral modulus of continuity

If $f \in Hol(\mathbb{D})$ has a non-tangential limit $f(e^{i\theta})$ at almost every $e^{i\theta} \in \mathbb{T}$ and $\delta > 0$, we define for $1 \le p < \infty$

$$\omega_{
ho}(\delta,f) = \sup_{0 < |t| \le \delta} \left(rac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(e^{i(heta+t)}) - f(e^{i heta})
ight|^{
ho} d heta
ight)^{1/
ho}.$$

and for $p = \infty$ we define

$$\omega_{\infty}(\delta, f) = \sup_{0 < |t| \le \delta} \left(\operatorname{ess.sup}_{\theta \in [-\pi, \pi]} |f(e^{i(\theta + t)}) - f(e^{i\theta})|
ight).$$

Integral modulus of continuity

If $f \in Hol(\mathbb{D})$ has a non-tangential limit $f(e^{i\theta})$ at almost every $e^{i\theta} \in \mathbb{T}$ and $\delta > 0$, we define for $1 \le p < \infty$

$$\omega_{\mathcal{P}}(\delta, f) = \sup_{0 < |t| \le \delta} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(e^{i(\theta+t)}) - f(e^{i\theta}) \right|^{p} d\theta \right)^{1/p}$$

and for $p = \infty$ we define

$$\omega_\infty(\delta, f) = \sup_{0 < |t| \le \delta} \left(\operatorname{ess.sup}_{\theta \in [-\pi,\pi]} |f(e^{i(heta+t)}) - f(e^{i heta})|
ight).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Integral modulus of continuity

If $f \in Hol(\mathbb{D})$ has a non-tangential limit $f(e^{i\theta})$ at almost every $e^{i\theta} \in \mathbb{T}$ and $\delta > 0$, we define for $1 \le p < \infty$

$$\omega_{\mathcal{P}}(\delta,f) = \sup_{\mathbf{0} < |t| \leq \delta} \left(rac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(e^{i(heta+t)}) - f(e^{i heta})
ight|^{\mathcal{P}} d heta
ight)^{1/\mathcal{P}},$$

and for $p = \infty$ we define

$$\omega_{\infty}(\delta, f) = \sup_{0 < |t| \le \delta} \left(\operatorname{ess.sup}_{\theta \in [-\pi, \pi]} |f(e^{i(\theta + t)}) - f(e^{i\theta})|
ight).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Mean Lipschitz spaces

Given $1 \le p \le \infty$ and $0 < \alpha \le 1$, we define the mean Lipschitz space Λ^p_{α} as

$$\Lambda^p_{\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \exists f(e^{i\theta}) \text{ a.e. } \theta, \, \omega_p(\delta, f) = O(\delta^{\alpha}), \text{ as } \delta \to 0 \right\}.$$

Theorem (Hardy & Littlewood, 1932)

If $1 \le p \le \infty$ and $0 < \alpha \le 1$ then we have that $\Lambda^p_{\alpha} \subset H^p$ and

$$\Lambda^p_{\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_p(r, f') = O\left(\frac{1}{(1-r)^{1-\alpha}}\right) \right\}.$$

Mean Lipschitz spaces

Given 1 \leq *p* \leq ∞ and 0 $< \alpha \leq$ 1, we define the mean Lipschitz space Λ^p_{α} as

$$\Lambda^{p}_{\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \exists f(e^{i\theta}) \text{ a.e. } \theta, \, \omega_{p}(\delta, f) = O(\delta^{\alpha}), \text{ as } \delta \to 0 \right\}.$$

Theorem (Hardy & Littlewood, 1932)

If $1 \le p \le \infty$ and $0 < \alpha \le 1$ then we have that $\Lambda^p_{\alpha} \subset H^p$ and

$$\Lambda^{p}_{\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_{p}(r, f') = O\left(\frac{1}{(1-r)^{1-\alpha}}\right) \right\}.$$

Mean Lipschitz spaces

Given 1 \leq *p* \leq ∞ and 0 $< \alpha \leq$ 1, we define the mean Lipschitz space Λ^p_{α} as

$$\Lambda^{p}_{\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \exists f(e^{i\theta}) \text{ a.e. } \theta, \ \omega_{p}(\delta, f) = O(\delta^{\alpha}), \text{ as } \delta \to 0 \right\}.$$

Theorem (Hardy & Littlewood, 1932)

If $1 \le p \le \infty$ and $0 < \alpha \le 1$ then we have that $\Lambda^p_{\alpha} \subset H^p$ and $\Lambda^p_{\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_p(r, f') = O\left(\frac{1}{(1-r)^{1-\alpha}}\right) \right\}.$

Mean Lipschitz spaces

Given 1 \leq *p* \leq ∞ and 0 $< \alpha \leq$ 1, we define the mean Lipschitz space Λ^p_{α} as

$$\Lambda^{p}_{\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : \exists f(e^{i\theta}) \text{ a.e. } \theta, \ \omega_{p}(\delta, f) = O(\delta^{\alpha}), \text{ as } \delta \to 0 \right\}.$$

Theorem (Hardy & Littlewood, 1932)

If $1 \le p \le \infty$ and $0 < \alpha \le 1$ then we have that $\Lambda^p_{\alpha} \subset H^p$ and

$$\Lambda^p_{\alpha} = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_p(r, f') = O\left(\frac{1}{(1-r)^{1-\alpha}}\right) \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●
Theorem (Bourdon, Shapiro, Sledd, 1989)

$$\Lambda^p_{1/p} \subset \Lambda^q_{1/q} \subset BMOA \subset \mathcal{B}, \quad 1 \leq p < q < \infty.$$

This result is sharp in a very strong sense.

イロト 不得 とくほ とくほとう

Theorem (Bourdon, Shapiro, Sledd, 1989)

$$\Lambda^p_{1/p} \subset \Lambda^q_{1/q} \subset {\it BMOA} \subset {\cal B}, \quad 1 \leq p < q < \infty.$$

This result is sharp in a very strong sense.

イロト イポト イヨト イヨト

Theorem (Bourdon, Shapiro, Sledd, 1989)

$$\Lambda^p_{1/p} \subset \Lambda^q_{1/q} \subset BMOA \subset \mathcal{B}, \quad 1 \leq p < q < \infty.$$

This result is sharp in a very strong sense.

イロト イポト イヨト イヨト

Generalization of Λ^p_{α} spaces

Let $\omega : [0, \pi] \to [0, \infty)$ be a continuous and increasing function with $\omega(0) = 0$ and $\omega(t) > 0$ if t > 0. Then, for $1 \le p \le \infty$, the mean Lipschitz space $\Lambda(p, \omega)$ is defined as

$$\Lambda(p,\omega) = \{ f \in H^p : \omega_p(\delta, f) = O(\omega(\delta)), \text{ as } \delta \to 0 \}$$

With this notation $\Lambda^{p}_{\alpha} = \Lambda(p, \delta^{\alpha})$.

Generalization of Λ^{p}_{α} spaces

Let $\omega : [0, \pi] \to [0, \infty)$ be a continuous and increasing function with $\omega(0) = 0$ and $\omega(t) > 0$ if t > 0.

Then, for $1 \le p \le \infty$, the mean Lipschitz space $\Lambda(p, \omega)$ is defined as

$$\Lambda(p,\omega) = \{ f \in H^p : \omega_p(\delta, f) = O(\omega(\delta)), \text{ as } \delta \to 0 \}$$

With this notation $\Lambda^{p}_{\alpha} = \Lambda(p, \delta^{\alpha})$.

Generalization of Λ^{p}_{α} spaces

Let $\omega : [0, \pi] \to [0, \infty)$ be a continuous and increasing function with $\omega(0) = 0$ and $\omega(t) > 0$ if t > 0. Then, for $1 \le p \le \infty$, the mean Lipschitz space $\Lambda(p, \omega)$ is defined as

$$\Lambda(\boldsymbol{p},\omega) = \{f \in H^{\boldsymbol{p}} : \omega_{\boldsymbol{p}}(\delta,f) = \boldsymbol{O}(\omega(\delta)), \text{ as } \delta \to \mathbf{0}\}.$$

With this notation $\Lambda^{\rho}_{\alpha} = \Lambda(\rho, \delta^{\alpha})$.

Generalization of Λ^{p}_{α} spaces

Let $\omega : [0, \pi] \to [0, \infty)$ be a continuous and increasing function with $\omega(0) = 0$ and $\omega(t) > 0$ if t > 0. Then, for $1 \le p \le \infty$, the mean Lipschitz space $\Lambda(p, \omega)$ is defined as

$$\Lambda(\boldsymbol{p},\omega) = \{f \in H^{\boldsymbol{p}} : \omega_{\boldsymbol{p}}(\delta,f) = O(\omega(\delta)), \text{ as } \delta \to \mathbf{0}\}.$$

With this notation $\Lambda^{p}_{\alpha} = \Lambda(p, \delta^{\alpha})$.

Dini condition

We say that ω satisfies the Dini condition if there exists a positive constant *C* such that

$$\int_{0}^{\delta} rac{\omega(t)}{t} \, dt \leq C \omega(\delta), \quad 0 < \delta < 1.$$

Condition b

We say that ω satisfies the b_1 condition if there exists a positive constant *C* such that

$$\int_{\delta}^{\pi} rac{\omega(t)}{t^2} \, dt \leq C rac{\omega(\delta)}{\delta}, \quad 0 < \delta < 1$$

イロト イポト イヨト イヨト

3

Dini condition

We say that ω satisfies the Dini condition if there exists a positive constant *C* such that

$$\int_0^\delta rac{\omega(t)}{t}\, dt \leq oldsymbol{C} \omega(\delta), \quad 0<\delta<1.$$

Condition b

We say that ω satisfies the b_1 condition if there exists a positive constant *C* such that

$$\int_{\delta}^{\pi} rac{\omega(t)}{t^2} \, dt \leq C rac{\omega(\delta)}{\delta}, \quad 0 < \delta < 1$$

イロト イポト イヨト イヨト 一臣

Dini condition

We say that ω satisfies the Dini condition if there exists a positive constant *C* such that

$$\int_0^\delta rac{\omega(t)}{t}\, dt \leq C \omega(\delta), \quad 0<\delta<1.$$

Condition *b*₁

We say that ω satisfies the b_1 condition if there exists a positive constant *C* such that

$$\int_{\delta}^{\pi} rac{\omega(t)}{t^2} \, dt \leq C rac{\omega(\delta)}{\delta}, \quad 0 < \delta < 1.$$

ヘロト 人間 ト ヘヨト ヘヨト

Admissible weights

$\mathcal{AW} = \text{Dini} \cap b_1.$

Theorem (Blasco & de Souza, 1990)

If $1 \leq p \leq \infty$ and $\omega \in AW$ then,

$$\Lambda(p,\omega) = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_p(r,f') = O\left(\frac{\omega(1-r)}{1-r}\right), \text{ as } r \to 1 \right\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Admissible weights

$$\mathcal{AW} = \mathsf{Dini} \cap b_1.$$

Theorem (Blasco & de Souza, 1990)

If $1 \leq p \leq \infty$ and $\omega \in AW$ then,

$$\Lambda(p,\omega) = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_p(r,f') = O\left(\frac{\omega(1-r)}{1-r}\right), \text{ as } r \to 1 \right\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Admissible weights

$$\mathcal{AW} = \mathsf{Dini} \cap b_1.$$

Theorem (Blasco & de Souza, 1990)

If $1 \leq p \leq \infty$ and $\omega \in \mathcal{AW}$ then,

$$\Lambda(p,\omega) = \left\{ f \in \mathcal{H}ol(\mathbb{D}) : M_p(r,f') = O\left(\frac{\omega(1-r)}{1-r}\right), \text{ as } r \to 1 \right\}.$$

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

Theorem (Bourdon, Shapiro, Sledd, 1989)

$$\Lambda^p_{1/p} \subset \Lambda^q_{1/q} \subset \textit{BMOA} \subset \mathcal{B}, \quad 1 \leq p < q < \infty.$$

Theorem (Girela, 1997)

If $1 and <math>\omega \in AW$ with $\frac{\omega(\delta)}{\delta^{1/p}} \nearrow \infty$ when $\delta \searrow 0$ then $\Lambda(p, \omega) \not\subset B$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Theorem (Bourdon, Shapiro, Sledd, 1989)

$$\Lambda^p_{1/p} \subset \Lambda^q_{1/q} \subset \textit{BMOA} \subset \mathcal{B}, \quad 1 \leq p < q < \infty.$$

Theorem (Girela, 1997)

If $1 and <math>\omega \in AW$ with $\frac{\omega(\delta)}{\delta^{1/\rho}} \nearrow \infty$ when $\delta \searrow 0$ then $\Lambda(p, \omega) \not\subset B$.

Theorem

Let μ be a positive Borel measure on [0, 1) and let X be a Banach space of analytic functions in \mathbb{D} with $\Lambda_{1/2}^2 \subset X \subset \mathcal{B}$. Then the following conditions are equivalent.

- (i) The operator *H_μ* is well defined in *X* and, furthermore, it is a bounded operator from *X* into the Bloch space *B*.
- (ii) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into $\Lambda_{1/2}^2$.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure. (iv) $\int_{[0,1)} t^n \log \frac{1}{1-t} d\mu(t) = O\left(\frac{1}{n}\right)$.

X can be $BMOA,~Q_s$ for s> 0 or $\Lambda^p_{1/p}$ for 2 $\leq p < \infty$.

イロト 不得 とくほと くほう

Theorem

Let μ be a positive Borel measure on [0, 1) and let X be a Banach space of analytic functions in \mathbb{D} with $\Lambda_{1/2}^2 \subset X \subset \mathcal{B}$. Then the following conditions are equivalent.

- (i) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into the Bloch space \mathcal{B} .
- (ii) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into $\Lambda_{1/2}^2$.
- (iii) The measure μ is a 1-logarithmic 1-Carleson measure. (iv) $\int_{[0,1)} t^n \log \frac{1}{1-t} d\mu(t) = O(\frac{1}{n}).$

X can be BMOA, Q_{s} for s> 0 or $\Lambda^{p}_{1/p}$ for 2 \leq $p<\infty$.

ヘロト 人間 とくほ とくほ

Theorem

Let μ be a positive Borel measure on [0, 1) and let X be a Banach space of analytic functions in \mathbb{D} with $\Lambda_{1/2}^2 \subset X \subset \mathcal{B}$. Then the following conditions are equivalent.

- (i) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into the Bloch space \mathcal{B} .
- (ii) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into $\Lambda_{1/2}^2$.
- (iii) The measure μ is a 1-logarithmic 1-Carleson measure. (iv) $\int_{[0,1)} t^n \log \frac{1}{1-t} d\mu(t) = O(\frac{1}{n}).$

X can be *BMOA*, Q_s for s > 0 or $\Lambda_{1/p}^{p}$ for $2 \le p < \infty$.

ヘロン 人間 とくほ とくほう

Lemma

Let $f \in \mathcal{H}ol(\mathbb{D})$ be of the form $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with $\{a_n\}_{n=0}^{\infty}$ being a decreasing sequence of nonnegative numbers. If *X* is a subspace of $\mathcal{H}ol(\mathbb{D})$ with

$$\Lambda^2_{1/2} \subset X \subset \mathcal{B},$$

then

$$f \in X \quad \Leftrightarrow \quad a_n = O\left(\frac{1}{n}\right).$$

Lemma (M.)

Let $f \in \mathcal{H}ol(\mathbb{D})$ be of the form $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with $\{a_n\}_{n=0}^{\infty}$ being a decreasing sequence of nonnegative numbers. If $1 and X is a subspace of <math>\mathcal{H}ol(\mathbb{D})$ with

$$\Lambda^p_{1/p} \subset X \subset \mathcal{B}$$

then

$$f \in X \quad \Leftrightarrow \quad a_n = O\left(\frac{1}{n}\right).$$

Theorem (M.)

Suppose that $1 . Let <math>\mu$ be a positive Borel measure on [0, 1) and let X be a Banach space of analytic functions in \mathbb{D} with $\Lambda^{p}_{1/p} \subset X \subset \mathcal{B}$. Then the following conditions are equivalent.

- (i) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into the Bloch space \mathcal{B} .
- (ii) The operator \mathcal{H}_{μ} is well defined in *X* and, furthermore, it is a bounded operator from *X* into $\Lambda_{1/p}^{p}$.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure. (iv) $\int_{[0,1)} t^n \log \frac{1}{1-t} d\mu(t) = O(\frac{1}{n}).$

ヘロン 人間 とくほ とくほ とう

Corollary

Let μ be a positive Borel measure on [0, 1) and 1 . $Then the operator <math>\mathcal{H}_{\mu}$ is well defined in $\Lambda^{p}_{1/p}$ and, furthermore, it is a bounded operator from $\Lambda^{p}_{1/p}$ into itself if and only if μ is a 1-logarithmic 1-Carleson measure.

ヘロト ヘアト ヘビト ヘビト

Corollary

Let μ be a positive Borel measure on [0, 1) and 1 . $Then the operator <math>\mathcal{H}_{\mu}$ is well defined in $\Lambda^{p}_{1/p}$ and, furthermore, it is a bounded operator from $\Lambda^{p}_{1/p}$ into itself if and only if μ is a 1-logarithmic 1-Carleson measure.

ヘロン 人間 とくほ とくほ とう

1

Lemma (M.)

Let $1 , <math>\omega \in AW$ and let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with $\{a_n\}_{n=0}^{\infty}$ being a decreasing sequence of nonnegative numbers. Then

$$f \in \Lambda(p,\omega) \quad \Leftrightarrow \quad a_n = O\left(\frac{\omega(1/n)}{n^{1-1/p}}\right)$$

イロト イポト イヨト イヨト 三日

Lemma (M.)

Let $1 , <math>\omega \in AW$ and let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with $\{a_n\}_{n=0}^{\infty}$ being a decreasing sequence of nonnegative numbers. Then

$$f \in \Lambda(p, \omega) \quad \Leftrightarrow \quad a_n = O\left(\frac{\omega(1/n)}{n^{1-1/p}}\right).$$

イロト イポト イヨト イヨト

э.

Theorem (M.)

Let $1 , <math>\omega \in AW$ with $\frac{\omega(\delta)}{\delta^{1/p}} \nearrow \infty$ when $\delta \searrow 0$. The following conditions are equivalent:

- (i) The operator H_μ is well defined in Λ(p, ω) and, furthermore, it is a bounded operator from Λ(p, ω) into itself.
- (ii) The measure μ is a Carleson measure.

Remark

- *H_µ* : Λ^p_{1/p} → Λ^p_{1/p} bounded ⇔ µ is a 1-log 1-Carleson measure.
- *H_μ* : Λ(*p*, ω) → Λ(*p*, ω) bounded ⇔ μ is a Carleson measure.

イロン 不得と 不良と 不良と

Theorem (M.)

Let $1 , <math>\omega \in AW$ with $\frac{\omega(\delta)}{\delta^{1/p}} \nearrow \infty$ when $\delta \searrow 0$. The following conditions are equivalent:

- (i) The operator H_μ is well defined in Λ(p, ω) and, furthermore, it is a bounded operator from Λ(p, ω) into itself.
- (ii) The measure μ is a Carleson measure.

Remark

- $\mathcal{H}_{\mu} : \Lambda^{p}_{1/p} \to \Lambda^{p}_{1/p}$ bounded $\Leftrightarrow \mu$ is a 1-log 1-Carleson measure.
- *H_µ* : Λ(*p*, ω) → Λ(*p*, ω) bounded ⇔ µ is a Carleson measure.

ヘロト 人間 とくほ とくほとう

Theorem (M.)

Let $1 , <math>\omega \in AW$ with $\frac{\omega(\delta)}{\delta^{1/p}} \nearrow \infty$ when $\delta \searrow 0$. The following conditions are equivalent:

 (i) The operator H_μ is well defined in Λ(p, ω) and, furthermore, it is a bounded operator from Λ(p, ω) into itself.

ii) The measure μ is a Carleson measure.

Remark

- $\mathcal{H}_{\mu} : \Lambda^{p}_{1/p} \to \Lambda^{p}_{1/p}$ bounded $\Leftrightarrow \mu$ is a 1-log 1-Carleson measure.
- *H_µ* : Λ(*p*, ω) → Λ(*p*, ω) bounded ⇔ µ is a Carleson measure.

・ロット (雪) () () () ()

Theorem (M.)

Let $1 , <math>\omega \in AW$ with $\frac{\omega(\delta)}{\delta^{1/p}} \nearrow \infty$ when $\delta \searrow 0$. The following conditions are equivalent:

- (i) The operator H_μ is well defined in Λ(p, ω) and, furthermore, it is a bounded operator from Λ(p, ω) into itself.
- (ii) The measure μ is a Carleson measure.

Remark

- $\mathcal{H}_{\mu} : \Lambda^{p}_{1/p} \to \Lambda^{p}_{1/p}$ bounded $\Leftrightarrow \mu$ is a 1-log 1-Carleson measure.
- *H_µ* : Λ(*p*, ω) → Λ(*p*, ω) bounded ⇔ µ is a Carleson measure.

ヘロン 人間 とくほ とくほ とう

Theorem (M.)

Let $1 , <math>\omega \in AW$ with $\frac{\omega(\delta)}{\delta^{1/p}} \nearrow \infty$ when $\delta \searrow 0$. The following conditions are equivalent:

- (i) The operator H_μ is well defined in Λ(p, ω) and, furthermore, it is a bounded operator from Λ(p, ω) into itself.
- (ii) The measure μ is a Carleson measure.

Remark

- *H_µ* : Λ^p_{1/p} → Λ^p_{1/p} bounded ⇔ µ is a 1-log 1-Carleson measure.
- *H_μ* : Λ(*p*, ω) → Λ(*p*, ω) bounded ⇔ μ is a Carleson measure.

イロト イポト イヨト イヨト

Proof

 $\lfloor (i) \Rightarrow (ii) \rfloor$ Suppose that $\mathcal{H}_{\mu} : \Lambda(p, \omega) \to \Lambda(p, \omega)$ is bounded. By the Lemma

$$f(z) = \sum_{n=1}^{\infty} \frac{\omega(1/n)}{n^{1-1/p}} z^n, f \in \Lambda(p, \omega), \text{ so } \mathcal{H}_{\mu}(f) \in \Lambda(p, \omega).$$

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \, \mu_{n+k} \right) z^n.$$

Since $\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \mu_{n+k} \searrow 0$, using again the Lemma we can prove that μ is a Carleson measure.

イロト 不得 とくほと くほとう

3

Proof

 $\lfloor (i) \Rightarrow (ii) \rfloor$ Suppose that $\mathcal{H}_{\mu} : \Lambda(p, \omega) \to \Lambda(p, \omega)$ is bounded. By the Lemma

 $f(z) = \sum_{n=1}^{\infty} \frac{\omega(1/n)}{n^{1-1/p}} z^n, \ f \in \Lambda(p,\omega), \quad \text{so } \mathcal{H}_{\mu}(f) \in \Lambda(p,\omega)$

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \, \mu_{n+k} \right) z^n.$$

Since $\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \mu_{n+k} \searrow 0$, using again the Lemma we can prove that μ is a Carleson measure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Proof

 $\lfloor (i) \Rightarrow (ii) \rfloor$ Suppose that $\mathcal{H}_{\mu} : \Lambda(p, \omega) \rightarrow \Lambda(p, \omega)$ is bounded. By the Lemma

$$f(z) = \sum_{n=1}^{\infty} \frac{\omega(1/n)}{n^{1-1/p}} z^n, f \in \Lambda(p, \omega), \text{ so } \mathcal{H}_{\mu}(f) \in \Lambda(p, \omega)$$

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \, \mu_{n+k} \right) z^n.$$

Since $\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \mu_{n+k} \searrow 0$, using again the Lemma we can prove that μ is a Carleson measure.

Proof

 $\lfloor (i) \Rightarrow (ii) \rfloor$ Suppose that $\mathcal{H}_{\mu} : \Lambda(p, \omega) \rightarrow \Lambda(p, \omega)$ is bounded. By the Lemma

$$f(z) = \sum_{n=1}^{\infty} rac{\omega(1/n)}{n^{1-1/p}} z^n, \ f \in \Lambda(p,\omega), \quad ext{so } \mathcal{H}_\mu(f) \in \Lambda(p,\omega)$$

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \, \mu_{n+k} \right) z^n.$$

Since $\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \mu_{n+k} \searrow 0$, using again the Lemma we can prove that μ is a Carleson measure.

Proof

 $\lfloor (i) \Rightarrow (ii) \rfloor$ Suppose that $\mathcal{H}_{\mu} : \Lambda(p, \omega) \rightarrow \Lambda(p, \omega)$ is bounded. By the Lemma

$$f(z) = \sum_{n=1}^{\infty} rac{\omega(1/n)}{n^{1-1/p}} z^n, \ f \in \Lambda(p,\omega), \quad ext{so } \mathcal{H}_{\mu}(f) \in \Lambda(p,\omega)$$

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \, \mu_{n+k} \right) z^n.$$

Since $\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \mu_{n+k} \searrow 0$, using again the Lemma we can prove that μ is a Carleson measure.

Proof

 $\lfloor (i) \Rightarrow (ii) \rfloor$ Suppose that $\mathcal{H}_{\mu} : \Lambda(p, \omega) \rightarrow \Lambda(p, \omega)$ is bounded. By the Lemma

$$f(z) = \sum_{n=1}^{\infty} rac{\omega(1/n)}{n^{1-1/p}} z^n, \ f \in \Lambda(p,\omega), \quad ext{so } \mathcal{H}_\mu(f) \in \Lambda(p,\omega)$$

$$\mathcal{H}_{\mu}(f)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \, \mu_{n+k} \right) z^n.$$

Since $\sum_{k=1}^{\infty} \frac{\omega(1/k)}{k^{1-1/p}} \mu_{n+k} \searrow 0$, using again the Lemma we can prove that μ is a Carleson measure.
Proof

 $(ii) \Rightarrow (i)$ Suppose that μ is a Carleson measure. Using the following Lemma (Girela & González, 2000)

$$f\in \Lambda(
ho,\omega) \Rightarrow |f(z)|\lesssim rac{\omega(1-|z|)}{(1-|z|)^{1/
ho}}, \quad z\in \mathbb{D}$$

We can prove that

$$f \in \Lambda(p,\omega) \Rightarrow \int_{[0,1)} \frac{|f(t)|}{|1-tz|} d\mu(t) < \infty.$$

So if $f \in \Lambda(p, \omega)$ then $I_{\mu}(f)$ and $\mathcal{H}_{\mu}(f)$ are well defined and

 $\mathcal{H}_{\mu}(f)(z) = I_{\mu}(f)(z), \quad z \in \mathbb{D}.$

Proof

 $(ii) \Rightarrow (i)$ Suppose that μ is a Carleson measure. Using the following Lemma (Girela & González, 2000)

$$f\in \Lambda(p,\omega) \Rightarrow |f(z)|\lesssim rac{\omega(1-|z|)}{(1-|z|)^{1/p}}, \quad z\in \mathbb{D}$$

We can prove that

$$f \in \Lambda(p,\omega) \Rightarrow \int_{[0,1)} \frac{|f(t)|}{|1-tz|} d\mu(t) < \infty.$$

So if $f \in \Lambda(p, \omega)$ then $I_{\mu}(f)$ and $\mathcal{H}_{\mu}(f)$ are well defined and

 $\mathcal{H}_{\mu}(f)(z) = I_{\mu}(f)(z), \quad z \in \mathbb{D}.$

Proof

 $(ii) \Rightarrow (i)$ Suppose that μ is a Carleson measure. Using the following Lemma (Girela & González, 2000)

$$f\in \Lambda(oldsymbol{
ho},\omega) \Rightarrow |f(z)|\lesssim rac{\omega(1-|z|)}{(1-|z|)^{1/
ho}}, \quad z\in \mathbb{D}$$

We can prove that

$$f \in \Lambda(\rho, \omega) \Rightarrow \int_{[0,1)} \frac{|f(t)|}{|1 - tz|} d\mu(t) < \infty.$$

So if $f \in \Lambda(p, \omega)$ then $I_{\mu}(f)$ and $\mathcal{H}_{\mu}(f)$ are well defined and

 $\mathcal{H}_{\mu}(f)(z) = I_{\mu}(f)(z), \quad z \in \mathbb{D}.$

Proof

 $(ii) \Rightarrow (i)$ Suppose that μ is a Carleson measure. Using the following Lemma (Girela & González, 2000)

$$f\in \Lambda(oldsymbol{
ho},\omega)\Rightarrow |f(z)|\lesssim rac{\omega(1-|z|)}{(1-|z|)^{1/
ho}},\quad z\in\mathbb{D}$$

We can prove that

$$f \in \Lambda(\boldsymbol{p},\omega) \Rightarrow \int_{[0,1)} rac{|f(t)|}{|1-tz|} d\mu(t) < \infty.$$

So if $f \in \Lambda(p, \omega)$ then $I_{\mu}(f)$ and $\mathcal{H}_{\mu}(f)$ are well defined and

 $\mathcal{H}_{\mu}(f)(z) = I_{\mu}(f)(z), \quad z \in \mathbb{D}.$

Proof

 $(ii) \Rightarrow (i)$ Suppose that μ is a Carleson measure. Using the following Lemma (Girela & González, 2000)

$$f\in \Lambda(oldsymbol{
ho},\omega)\Rightarrow |f(z)|\lesssim rac{\omega(1-|z|)}{(1-|z|)^{1/
ho}},\quad z\in\mathbb{D}$$

We can prove that

$$f \in \Lambda(\boldsymbol{p},\omega) \Rightarrow \int_{[0,1)} rac{|f(t)|}{|1-tz|} d\mu(t) < \infty.$$

So if $f \in \Lambda(\rho, \omega)$ then $I_{\mu}(f)$ and $\mathcal{H}_{\mu}(f)$ are well defined and

$$\mathcal{H}_{\mu}(f)(z) = I_{\mu}(f)(z), \quad z \in \mathbb{D}.$$

ヘロト ヘアト ヘヨト ヘヨト

Proof

Using again the Lemma, the Minkowski inequality and doing some work we obtain that

$$\begin{split} M_{p}\left(r,l_{\mu}(f)'\right) &= \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\left|\int_{[0,1)}\frac{tf(t)}{(1-tre^{i\theta})^{2}}\,d\mu(t)\right|^{p}\,d\theta\right)^{1/p} \\ &\lesssim \int_{[0,1)}|f(t)|\left(\int_{-\pi}^{\pi}\frac{d\theta}{|1-tre^{i\theta}|^{2p}}\right)^{1/p}\,d\mu(t) \\ &\lesssim \int_{[0,1)}\frac{|f(t)|}{(1-tr)^{2-1/p}}\,d\mu(t) \\ &\lesssim \int_{[0,1)}\frac{\omega(1-t)}{(1-t)^{1/p}(1-tr)^{2-1/p}}\,d\mu(t) \\ &\lesssim \frac{\omega(1-r)}{(1-r)}. \end{split}$$

Noel Merchán noel@uma.es

A generalized Hilbert operator acting on mean Lipschitz spaces

200

Proof

Using again the Lemma, the Minkowski inequality and doing some work we obtain that

$$\begin{split} M_{p}\left(r,l_{\mu}(f)'\right) &= \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\left|\int_{[0,1)}\frac{tf(t)}{(1-tre^{i\theta})^{2}}\,d\mu(t)\right|^{p}\,d\theta\right)^{1/p} \\ &\lesssim \int_{[0,1)}|f(t)|\left(\int_{-\pi}^{\pi}\frac{d\theta}{|1-tre^{i\theta}|^{2p}}\right)^{1/p}\,d\mu(t) \\ &\lesssim \int_{[0,1)}\frac{|f(t)|}{(1-tr)^{2-1/p}}\,d\mu(t) \\ &\lesssim \int_{[0,1)}\frac{\omega(1-t)}{(1-t)^{1/p}(1-tr)^{2-1/p}}\,d\mu(t) \\ &\lesssim \frac{\omega(1-r)}{(1-r)}. \end{split}$$

Noel Merchán noel@uma.es

Proof

Using again the Lemma, the Minkowski inequality and doing some work we obtain that

$$\begin{split} M_{p}\left(r, I_{\mu}(f)'\right) &= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_{[0,1)} \frac{tf(t)}{(1 - tre^{i\theta})^{2}} d\mu(t) \right|^{p} d\theta \right)^{1/p} \\ &\lesssim \int_{[0,1)} |f(t)| \left(\int_{-\pi}^{\pi} \frac{d\theta}{|1 - tre^{i\theta}|^{2p}} \right)^{1/p} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{|f(t)|}{(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{\omega(1 - t)}{(1 - t)^{1/p}(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \frac{\omega(1 - r)}{(1 - r)}. \end{split}$$

Noel Merchán noel@uma.es

Proof

Using again the Lemma, the Minkowski inequality and doing some work we obtain that

$$\begin{split} M_{p}\left(r, I_{\mu}(f)'\right) &= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_{[0,1)} \frac{tf(t)}{(1 - tre^{i\theta})^{2}} d\mu(t) \right|^{p} d\theta \right)^{1/p} \\ &\lesssim \int_{[0,1)} |f(t)| \left(\int_{-\pi}^{\pi} \frac{d\theta}{|1 - tre^{i\theta}|^{2p}} \right)^{1/p} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{|f(t)|}{(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{\omega(1 - t)}{(1 - t)^{1/p}(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \frac{\omega(1 - r)}{(1 - r)}. \end{split}$$

Noel Merchán noel@uma.es

Proof

Using again the Lemma, the Minkowski inequality and doing some work we obtain that

$$\begin{split} M_{p}\left(r, I_{\mu}(f)'\right) &= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_{[0,1)} \frac{tf(t)}{(1 - tre^{i\theta})^{2}} d\mu(t) \right|^{p} d\theta \right)^{1/p} \\ &\lesssim \int_{[0,1)} |f(t)| \left(\int_{-\pi}^{\pi} \frac{d\theta}{|1 - tre^{i\theta}|^{2p}} \right)^{1/p} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{|f(t)|}{(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{\omega(1 - t)}{(1 - t)^{1/p}(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \frac{\omega(1 - r)}{(1 - r)}. \end{split}$$

Proof

Using again the Lemma, the Minkowski inequality and doing some work we obtain that

$$\begin{split} M_{p}\left(r, I_{\mu}(f)'\right) &= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_{[0,1)} \frac{tf(t)}{(1 - tre^{i\theta})^{2}} d\mu(t) \right|^{p} d\theta \right)^{1/p} \\ &\lesssim \int_{[0,1)} |f(t)| \left(\int_{-\pi}^{\pi} \frac{d\theta}{|1 - tre^{i\theta}|^{2p}} \right)^{1/p} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{|f(t)|}{(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{\omega(1 - t)}{(1 - t)^{1/p}(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \frac{\omega(1 - r)}{(1 - r)}. \end{split}$$

Noel Merchán noel@uma.es

Proof

Using again the Lemma, the Minkowski inequality and doing some work we obtain that

$$\begin{split} M_{p}\left(r, I_{\mu}(f)'\right) &= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_{[0,1)} \frac{tf(t)}{(1 - tre^{i\theta})^{2}} d\mu(t) \right|^{p} d\theta \right)^{1/p} \\ &\lesssim \int_{[0,1)} |f(t)| \left(\int_{-\pi}^{\pi} \frac{d\theta}{|1 - tre^{i\theta}|^{2p}} \right)^{1/p} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{|f(t)|}{(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \int_{[0,1)} \frac{\omega(1 - t)}{(1 - t)^{1/p}(1 - tr)^{2 - 1/p}} d\mu(t) \\ &\lesssim \frac{\omega(1 - r)}{(1 - r)}. \end{split}$$

Noel Merchán noel@uma.es

THANK YOU!

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces

<ロト <回 > < 注 > < 注 > 、

3