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The unit disc and the unit circle
D = {z ∈ C : |z| < 1}, the unit disc.
T = {ξ ∈ C : |ξ| = 1}, the unit circle.

Spaces of analytic functions in the unit disc

Hol(D) is the space of all analytic functions in D.
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Hardy spaces

If 0 < r < 1 and f ∈ Hol(D), we set

Mp(r , f ) =

(
1

2π

∫ 2π

0
|f (reit )|p dt

)1/p

, 0 < p <∞,

M∞(r , f ) = sup
|z|=r
|f (z)|.

If 0 < p ≤ ∞, we consider the Hardy spaces Hp,

Hp =

{
f ∈ Hol(D) : ‖f‖Hp

def
= sup

0<r<1
Mp(r , f ) <∞

}
.
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BMOA

BMOA =
{

f ∈ H1 : f
(

eiθ
)
∈ BMO

}
.

Bloch space

B =

{
f ∈ Hol(D) : sup

z∈D
(1− |z|2)|f ′(z)| <∞

}
.

H∞ ⊂ BMOA ⊂ B.
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Hilbert matrix
Let H be the Hilbert matrix,

H =

(
1

n + k + 1

)
n,k≥0

.

H =


1 1/2 1/3 1/4 . . .

1/2 1/3 1/4 1/5 . . .
1/3 1/4 1/5 1/6 . . .
1/4 1/5 1/6 1/7 . . .

...
...

...
...

. . .

 .
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Hilbert matrix
The Hilbert matrix H can be viewed as an operator between
sequence spaces.

H ({an}∞n=0) =


1 1/2 1/3 1/4 . . .

1/2 1/3 1/4 1/5 . . .
1/3 1/4 1/5 1/6 . . .
1/4 1/5 1/6 1/7 . . .

...
...

...
...

. . .




a0
a1
a2
a3
...

 ,

{an}∞n=0 7→

{ ∞∑
k=0

ak

n + k + 1

}∞
n=0

.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Hilbert matrix
A generalized Hilbert matrix
Integral operator
Carleson measures

Hilbert matrix
The Hilbert matrix H can be viewed as an operator between
sequence spaces.

H ({an}∞n=0) =


1 1/2 1/3 1/4 . . .

1/2 1/3 1/4 1/5 . . .
1/3 1/4 1/5 1/6 . . .
1/4 1/5 1/6 1/7 . . .

...
...

...
...

. . .




a0
a1
a2
a3
...

 ,

{an}∞n=0 7→

{ ∞∑
k=0

ak

n + k + 1

}∞
n=0

.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Hilbert matrix
A generalized Hilbert matrix
Integral operator
Carleson measures

Hilbert matrix
The Hilbert matrix H can be viewed as an operator between
sequence spaces.

H ({an}∞n=0) =


1 1/2 1/3 1/4 . . .

1/2 1/3 1/4 1/5 . . .
1/3 1/4 1/5 1/6 . . .
1/4 1/5 1/6 1/7 . . .

...
...

...
...

. . .




a0
a1
a2
a3
...

 ,

{an}∞n=0 7→

{ ∞∑
k=0

ak

n + k + 1

}∞
n=0

.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Hilbert matrix
A generalized Hilbert matrix
Integral operator
Carleson measures

Hilbert matrix
The Hilbert matrix H can be viewed as an operator between
sequence spaces.

H ({an}∞n=0) =


1 1/2 1/3 1/4 . . .

1/2 1/3 1/4 1/5 . . .
1/3 1/4 1/5 1/6 . . .
1/4 1/5 1/6 1/7 . . .

...
...

...
...

. . .




a0
a1
a2
a3
...

 ,

{an}∞n=0 7→

{ ∞∑
k=0

ak

n + k + 1

}∞
n=0

.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Hilbert matrix
A generalized Hilbert matrix
Integral operator
Carleson measures

In the same way we can consider H as an operator in Hol(D)
multiplicating the matrix by the sequence of Taylor coefficients

of a function f (z) =
∞∑

n=0
anzn ∈ Hol(D).

We define formally the operator in Hol(D)

H(f )(z) =
∞∑

n=0

( ∞∑
k=0

ak

n + k + 1

)
zn.
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Hilbert matrix as an operator

The operator H is well defined on H1.
The operator H : Hp → Hp is bounded if 1 < p <∞,
(Diamantopoulos & Siskakis, 2000).
Dostanić, Jevtić & Vukotić (2008) found the exact norm of H as
an operator from Hp to Hp (1 < p <∞).
However, H is not bounded on H1 and neither on H∞.
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A generalized Hilbert matrix

Let µ be a finite positive Borel measure on [0,1).
Let Hµ = (µn,k )n,k≥0 be the Hankel matrix with entries

µn,k =

∫
[0,1)

tn+k dµ(t).

Hµ =


µ0 µ1 µ2 µ3 · · ·
µ1 µ2 µ3 µ4 · · ·
µ2 µ3 µ4 µ5 · · ·
µ3 µ4 µ5 µ6 · · ·
...

...
...

...
. . .

 .

If µ is the Lebesgue measure on the interval [0,1) we get the
classical Hilbert matrix.
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The matrix Hµ induces formally an operator on Hol(D) in the
same way than H:

Hµ(f )(z) =
∞∑

n=0
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)
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Integral operator

For a finite positive Borel measure on [0,1) µ we also define
the integral operator

Iµ(f )(z) =

∫
[0,1)

f (t)
1− tz

dµ(t),

when the right side has sense and it defines an analytic
function.
Hµ and Iµ are closely related. If f ∈ Hol(D) is good enough
then Hµ(f ) = Iµ(f ).
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Definition
Let I be an interval of T. We define the Carleson square
associated to I as
S(I) = {reiθ : eiθ ∈ I, 1− |I|2π ≤ r < 1}.

0 S( I ) I
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Definition
Let µ be a finite measure on D. µ is a Carleson measure if
there is a constant C > 0 such that

µ (S(I)) ≤ C|I| for every I ⊂ T interval.

Theorem (Carleson, 1962)
Let µ be a finite measure on D. Then µ is a Carleson measure
if and only if there exist a constant C > 0 such that∫

D
|f (z)|dµ(z) ≤ C‖f‖H1 for all f ∈ H1.
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Let µ be a positive Borel measure on D, 0 ≤ α <∞, and
0 < s <∞ we say that µ is an α-logarithmic s-Carleson
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µ (S(I))

(
log

2π
|I|

)α
≤ C|I|s, for any interval I ⊂ T.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Hilbert matrix
A generalized Hilbert matrix
Integral operator
Carleson measures

Logarithmic Carleson measures
Let µ be a positive Borel measure on D, 0 ≤ α <∞, and
0 < s <∞ we say that µ is an α-logarithmic s-Carleson
measure if there exists a positive constant C such that

µ (S(I))

(
log

2π
|I|

)α
≤ C|I|s, for any interval I ⊂ T.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Hilbert matrix
A generalized Hilbert matrix
Integral operator
Carleson measures

Widom (1966) and Power (1980) characterized those positive
Borel measures on [0,1) such that Hµ is bounded (or compact)
from H2 into itself.

Galanopoulos and Peláez (2010) characterized those positive
Borel measures on [0,1) such that Hµ is bounded (or compact)
in the Hardy space H1.

Chatzifountas, Girela and Peláez (2013) described those
positive Borel measures on [0,1) such that Hµ is bounded (or
compact) from Hp into Hq with 0 < p,q <∞.

Girela and M. (2017) described those positive Borel measures
on [0,1) such that Hµ is bounded on conformally invariant
spaces.
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Theorem (Girela, M.)

Let µ be a positive Borel measure on [0,1) such that∫
[0,1) log 2

1−t dµ(t) < ∞. Then the following three conditions
are equivalent:

(i) The operator Iµ is bounded from B into BMOA.
(ii) The operator Iµ is bounded from BMOA into itself.
(iii) The measure µ is a 1-logarithmic 1-Carleson measure.
Moreover, if (i) holds, then the operator Hµ is also well defined
on the Bloch space and

Hµ(f ) = Iµ(f ), for all f ∈ B,

and hence the operator Hµ is bounded from B into BMOA.
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Qs spaces
For 0 ≤ s <∞ we define the space Qs as

Qs =

{
f ∈ Hol(D) : sup

a∈D

∫
D
|f ′(z)|2(1− |ϕa(z)|2)s dA(z) <∞

}
.

D ( Qs1 ( Qs2 ( BMOA = Q1 ( B = Qs, 0 < s1 < s2 < 1 < s.
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Theorem (Girela, M.)

Let µ be a positive Borel measure on [0,1) and let
0 < s1, s2 <∞. Then the following conditions are equivalent.

(i) The operator Iµ is well defined in Qs1 and, furthermore, it is
a bounded operator from Qs1 into Qs2 .

(ii) The operator Hµ is well defined in Qs1 and, furthermore, it
is a bounded operator from Qs1 into Qs2 .

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.
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Λ2
1/2 =

{
f ∈ Hol(D) : M2(r , f ′) = O

(
1

(1− r)1/2

)}
.

Theorem (Girela, M.)

Let µ be a positive Borel measure on [0,1) and let X be a
Banach space of analytic functions in D with Λ2

1/2 ⊂ X ⊂ B.
Then the following conditions are equivalent.

(i) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into the Bloch space B.

(ii) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into Λ2

1/2.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.
(iv)

∫
[0,1) tn log 1

1−t dµ(t) = O
(1

n

)
.
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Integral modulus of continuity

If f ∈ Hol(D) has a non-tangential limit f (eiθ) at almost every
eiθ ∈ T and δ > 0, we define for 1 ≤ p <∞

ωp(δ, f ) = sup
0<|t |≤δ

(
1

2π

∫ π

−π

∣∣∣f (ei(θ+t))− f (eiθ)
∣∣∣p dθ

)1/p

,

and for p =∞ we define

ω∞(δ, f ) = sup
0<|t |≤δ

(
ess. sup
θ∈[−π,π]

|f (ei(θ+t))− f (eiθ)|

)
.
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Mean Lipschitz spaces
Given 1 ≤ p ≤ ∞ and 0 < α ≤ 1, we define the mean Lipschitz
space Λp

α as

Λp
α =

{
f ∈ Hol(D) : ∃ f (eiθ) a.e. θ, ωp(δ, f ) = O(δα), as δ → 0

}
.

Theorem (Hardy & Littlewood, 1932)

If 1 ≤ p ≤ ∞ and 0 < α ≤ 1 then we have that Λp
α ⊂ Hp and

Λp
α =

{
f ∈ Hol(D) : Mp(r , f ′) = O

(
1

(1− r)1−α

)}
.
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If 1 < p <∞ and α > 1
p then Λp

α ⊂ A ⊂ H∞.

If 1 < p <∞ and α = 1
p then f (z) = log

(
1

1−z

)
∈ Λp

1/p.

Theorem (Bourdon, Shapiro, Sledd, 1989)

Λp
1/p ⊂ Λq

1/q ⊂ BMOA ⊂ B, 1 ≤ p < q <∞.

This result is sharp in a very strong sense.
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Generalization of Λp
α spaces

Let ω : [0, π]→ [0,∞) be a continuous and increasing function
with ω(0) = 0 and ω(t) > 0 if t > 0.
Then, for 1 ≤ p ≤ ∞, the mean Lipschitz space Λ(p, ω) is
defined as

Λ(p, ω) = {f ∈ Hp : ωp(δ, f ) = O(ω(δ)), as δ → 0} .

With this notation Λp
α = Λ(p, δα).
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Dini condition
We say that ω satisfies the Dini condition if there exists a
positive constant C such that∫ δ

0

ω(t)
t

dt ≤ Cω(δ), 0 < δ < 1.

Condition b1

We say that ω satisfies the b1 condition if there exists a positive
constant C such that∫ π

δ

ω(t)
t2 dt ≤ C

ω(δ)

δ
, 0 < δ < 1.
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constant C such that∫ π

δ

ω(t)
t2 dt ≤ C

ω(δ)

δ
, 0 < δ < 1.
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Admissible weights

AW = Dini ∩ b1.

Theorem (Blasco & de Souza, 1990)
If 1 ≤ p ≤ ∞ and ω ∈ AW then,

Λ(p, ω) =

{
f ∈ Hol(D) : Mp(r , f ′) = O

(
ω(1− r)

1− r

)
, as r → 1

}
.
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If 1 < p <∞ and α > 1
p then Λp

α ⊂ A ⊂ H∞.

If 1 < p <∞ and α = 1
p then f (z) = log

(
1

1−z

)
∈ Λp

1/p.

Theorem (Bourdon, Shapiro, Sledd, 1989)

Λp
1/p ⊂ Λq

1/q ⊂ BMOA ⊂ B, 1 ≤ p < q <∞.

Theorem (Girela, 1997)

If 1 < p <∞ and ω ∈ AW with ω(δ)

δ1/p ↗∞ when δ ↘ 0 then

Λ(p, ω) 6⊂ B.
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Theorem
Let µ be a positive Borel measure on [0,1) and let X be a
Banach space of analytic functions in D with Λ2

1/2 ⊂ X ⊂ B.
Then the following conditions are equivalent.

(i) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into the Bloch space B.

(ii) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into Λ2

1/2.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.
(iv)

∫
[0,1) tn log 1

1−t dµ(t) = O
(1

n

)
.

X can be BMOA, Qs for s > 0 or Λp
1/p for 2 ≤ p <∞.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Theorem
Let µ be a positive Borel measure on [0,1) and let X be a
Banach space of analytic functions in D with Λ2

1/2 ⊂ X ⊂ B.
Then the following conditions are equivalent.

(i) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into the Bloch space B.

(ii) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into Λ2

1/2.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.
(iv)

∫
[0,1) tn log 1

1−t dµ(t) = O
(1

n

)
.

X can be BMOA, Qs for s > 0 or Λp
1/p for 2 ≤ p <∞.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Theorem
Let µ be a positive Borel measure on [0,1) and let X be a
Banach space of analytic functions in D with Λ2

1/2 ⊂ X ⊂ B.
Then the following conditions are equivalent.

(i) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into the Bloch space B.

(ii) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into Λ2

1/2.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.
(iv)

∫
[0,1) tn log 1

1−t dµ(t) = O
(1

n

)
.

X can be BMOA, Qs for s > 0 or Λp
1/p for 2 ≤ p <∞.

Noel Merchán noel@uma.es A generalized Hilbert operator acting on mean Lipschitz spaces



Notation and definitions
Generalized Hilbert matrix

Mean Lipschitz spaces
Hµ acting on mean Lipschitz spaces

Lemma
Let f ∈ Hol(D) be of the form f (z) =

∑∞
n=0 anzn with {an}∞n=0

being a decreasing sequence of nonnegative numbers.
If X is a subspace of Hol(D) with

Λ2
1/2 ⊂ X ⊂ B,

then

f ∈ X ⇔ an = O
(

1
n

)
.
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Lemma (M.)

Let f ∈ Hol(D) be of the form f (z) =
∑∞

n=0 anzn with {an}∞n=0
being a decreasing sequence of nonnegative numbers.
If 1 < p <∞ and X is a subspace of Hol(D) with

Λp
1/p ⊂ X ⊂ B

then

f ∈ X ⇔ an = O
(

1
n

)
.
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Theorem (M.)
Suppose that 1 < p <∞. Let µ be a positive Borel measure on
[0,1) and let X be a Banach space of analytic functions in D
with Λp

1/p ⊂ X ⊂ B. Then the following conditions are
equivalent.

(i) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into the Bloch space B.

(ii) The operator Hµ is well defined in X and, furthermore, it is
a bounded operator from X into Λp

1/p.

(iii) The measure µ is a 1-logarithmic 1-Carleson measure.
(iv)

∫
[0,1) tn log 1

1−t dµ(t) = O
(1

n

)
.
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Corollary

Let µ be a positive Borel measure on [0,1) and 1 < p <∞.
Then the operator Hµ is well defined in Λp

1/p and, furthermore, it
is a bounded operator from Λp

1/p into itself if and only if µ is a
1-logarithmic 1-Carleson measure.
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Corollary

Let µ be a positive Borel measure on [0,1) and 1 < p <∞.
Then the operator Hµ is well defined in Λp
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is a bounded operator from Λp
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Lemma (M.)

Let 1 < p <∞, ω ∈ AW and let f (z) =
∑∞

n=0 anzn with {an}∞n=0
being a decreasing sequence of nonnegative numbers. Then

f ∈ Λ(p, ω) ⇔ an = O
(
ω(1/n)

n1−1/p

)
.
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Theorem (M.)

Let 1 < p <∞, ω ∈ AW with ω(δ)

δ1/p ↗∞ when δ ↘ 0. The
following conditions are equivalent:

(i) The operator Hµ is well defined in Λ(p, ω) and,
furthermore, it is a bounded operator from Λ(p, ω) into
itself.

(ii) The measure µ is a Carleson measure.

Remark

Hµ : Λp
1/p → Λp

1/p bounded ⇔ µ is a 1-log 1-Carleson
measure.
Hµ : Λ(p, ω)→ Λ(p, ω) bounded ⇔ µ is a Carleson
measure.
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Proof

(i)⇒ (ii) Suppose that Hµ : Λ(p, ω)→ Λ(p, ω) is bounded. By
the Lemma

f (z) =
∞∑

n=1

ω(1/n)

n1−1/p zn, f ∈ Λ(p, ω), so Hµ(f ) ∈ Λ(p, ω).

Hµ(f )(z) =
∞∑

n=0

( ∞∑
k=1

ω(1/k)

k1−1/p µn+k

)
zn.

Since
∑∞

k=1
ω(1/k)
k1−1/p µn+k ↘ 0, using again the Lemma we can

prove that µ is a Carleson measure.
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Proof

(ii)⇒ (i) Suppose that µ is a Carleson measure. Using the
following Lemma (Girela & González, 2000)

f ∈ Λ(p, ω)⇒ |f (z)| . ω(1− |z|)
(1− |z|)1/p , z ∈ D.

We can prove that

f ∈ Λ(p, ω)⇒
∫
[0,1)

|f (t)|
|1− tz|

dµ(t) <∞.

So if f ∈ Λ(p, ω) then Iµ(f ) and Hµ(f ) are well defined and

Hµ(f )(z) = Iµ(f )(z), z ∈ D.
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Proof
Using again the Lemma, the Minkowski inequality and doing
some work we obtain that

Mp
(
r , Iµ(f )′

)
=

(
1

2π

∫ π

−π

∣∣∣∣∣
∫
[0,1)

tf (t)
(1− treiθ)2 dµ(t)

∣∣∣∣∣
p

dθ

)1/p

.
∫
[0,1)
|f (t)|

(∫ π

−π

dθ
|1− treiθ|2p

)1/p

dµ(t)

.
∫
[0,1)

|f (t)|
(1− tr)2−1/p dµ(t)

.
∫
[0,1)

ω(1− t)
(1− t)1/p(1− tr)2−1/p dµ(t)

.
ω(1− r)

(1− r)
.
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THANK YOU!
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