Boundary behavior of optimal approximants

Catherine Bénéteau, Myrto Manolaki and Daniel Seco

USF / UCD / ICMAT

Madrid International Workshop on Operator Theory and Function Spaces, UAM, 16th Oct 2018
Spaces over the disc

Definition

Dirichlet-type space, D_α, is:

$$\{ f \in \text{Hol}(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, \| f \|^2_\alpha = \sum_{k=0}^{\infty} |a_k|^2 (k + 1)\alpha < \infty \}$$
Spaces over the disc

Definition

Dirichlet-type space, D_α, is:

\[
\{ f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, \| f \|_\alpha^2 = \sum_{k=0}^{\infty} |a_k|^2(k + 1)^\alpha < \infty \}
\]

Examples

$\alpha = -1$, $A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$
Spaces over the disc

Definition

Dirichlet-type space, D_α, is:

$$\{ f \in \text{Hol}(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, \| f \|_\alpha^2 = \sum_{k=0}^{\infty} |a_k|^2 (k + 1)^\alpha < \infty \}$$

Today focus on these 3 examples:

Examples

$\alpha = -1$, $A^2 = \text{Hol}(\mathbb{D}) \cap L^2(\mathbb{D})$

$\alpha = 0$, $H^2 = \text{Hol}(\mathbb{D}) \cap L^2(\mathbb{T})$
Spaces over the disc

Definition

Dirichlet-type space, \(D_\alpha \), is:

\[
\{ f \in Hol(\mathbb{D}) : f(z) = \sum_{k \in \mathbb{N}} a_k z^k, \| f \|_\alpha^2 = \sum_{k=0}^{\infty} |a_k|^2 (k + 1)^\alpha \leq \infty \}
\]

Today focus on these 3 examples:

Examples

\[
\begin{align*}
\alpha = -1, & \quad A^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{D}) \\
\alpha = 0, & \quad H^2 = Hol(\mathbb{D}) \cap L^2(\mathbb{T}) \\
\alpha = 1, & \quad D = Hol(\mathbb{D}) \cap \{ A(f(\mathbb{D})) < \infty \}
\end{align*}
\]
The (forward) *shift operator* is bdd:

\[S : D_\alpha \rightarrow D_\alpha : Sf(z) = zf(z). \]

A closed subspace \(V \) of \(D_\alpha \) is *invariant* if \(SV \subset V \).
The (forward) **shift operator** is bdd:

\[S : D_\alpha \rightarrow D_\alpha : Sf(z) = zf(z). \]

A closed subspace \(V \) of \(D_\alpha \) is **invariant** if \(SV \subset V \).

\[
[f]_\alpha (= [f]) = \overline{\text{span}\{z^k f : k = 0, 1, 2, \ldots\}} = \overline{\mathcal{P}f}.
\]

\(\mathcal{P} \text{ dense } \subset D_\alpha \Rightarrow [1] = D_\alpha. \)
Cyclicity and invariant subspaces

- The (forward) shift operator is bdd:

\[S : D_\alpha \to D_\alpha : Sf(z) = zf(z). \]

A closed subspace \(V \) of \(D_\alpha \) is invariant if \(SV \subset V \).

- \[[f]_\alpha(= [f]) = \text{span}\{z^k f : k = 0, 1, 2, \ldots\} = \overline{Pf}. \]

\(P \) dense \(\subset D_\alpha \Rightarrow [1] = D_\alpha \).

Definition

A function \(f \) is cyclic (in \(D_\alpha \)) if \([f] = D_\alpha\)

\[\Leftrightarrow \exists \{p_n\}_{n \in \mathbb{N}} \in \mathcal{P} : \|p_n f - 1\|_\alpha \xrightarrow{n \to \infty} 0 \]
Cyclicity and invariant subspaces

- The (forward) *shift operator* is bdd:

\[S : D_\alpha \to D_\alpha : Sf(z) = zf(z). \]

A closed subspace *V* of *D_\alpha* is *invariant* if *SV \subset V*.

\[[f]_\alpha (= [f]) = \text{span}\{z^k f : k = 0, 1, 2, \ldots\} = \overline{\mathcal{P}f}. \]

P dense \(\subset D_\alpha \Rightarrow [1] = D_\alpha\).

Definition

A function *f* is *cyclic* (in *D_\alpha*) if \([f] = D_\alpha\)

\[\iff \exists \{p_n\}_{n \in \mathbb{N}} \in \mathcal{P} : \|p_n f - 1\|_\alpha \xrightarrow{n \to \infty} 0 \Rightarrow p_n \to 1/f \text{ pw in } \mathbb{D}. \]
Examples and classical results

- $Z(f) \cap \overline{D} = \emptyset \Rightarrow f \in \text{Hol}(\overline{D}) \Rightarrow f \text{ cyclic in } D_\alpha \Rightarrow Z(f) \cap D = \emptyset$.

Smirnov ('30s): H_2 functions factorize as inner \times outer.

Theorem (Beurling, '49)
For $H_2(\alpha = 0)$, cyclic \iff outer. Invariant subspaces generated by a single inner function.

In other spaces, much known but still to be understood.
Examples and classical results

- $Z(f) \cap \overline{D} = \emptyset + f \in Hol(\overline{D}) \Rightarrow f$ cyclic in $D_\alpha \Rightarrow Z(f) \cap D = \emptyset$.

Smirnov ('30s): H^2 functions factorize as inner \times outer.

Theorem (Beurling, '49)

For H^2 ($\alpha = 0$), cyclic \iff outer. Invariant subspaces generated by a single inner function.
Examples and classical results

- \(Z(f) \cap \overline{D} = \emptyset + f \in Hol(\overline{D}) \Rightarrow f \text{ cyclic in } D_\alpha \Rightarrow Z(f) \cap \mathbb{D} = \emptyset. \)

Smirnov ('30s): \(H^2 \) functions factorize as inner \(\times \) outer.

Theorem (Beurling, ’49)

For \(\mathcal{H}^2 \) \((\alpha = 0)\), cyclic \(\Leftrightarrow \) outer. Invariant subspaces generated by a single inner function.

In other spaces, much known but still to be understood.
Optimizational viewpoint

- BCLSS (JdAM,’15) and FMS (CMFT,’14): How cyclic is a function?

If we fix $\deg p \leq n$, how fast can $\|p_n f - 1\|_2 \to 0$?

Optimizational viewpoint:

$\Pi_n \text{ort. proj } \Pi_n : D_{\alpha} \to V_n = \{p f : p \in P_n\}$.

$\exists! \Pi_n (1)$, best approximation to 1 in V_n.

Definition: The best approximant to $1/f$ of degree n is the $p_n^{\ast} \in P_n$:

$p_n^{\ast} f = \Pi_n (1)$.

Now, cyclic $\iff \|p_n^{\ast} f - 1\|_2 \to 0 \iff p_n^{\ast}(0) \to 1/f(0)$.

BFKSS: When f not cyclic, $p_n f \to I_I (0)$, I_I "inner part of f".
BCLSS (JdAM,’15) and FMS (CMFT,’14):
How cyclic is a function?
If we fix $\deg p_n \leq n$, how fast can $\|p_n f - 1\|_2^2 \rightarrow 0$?
Optimizational viewpoint

- BCLSS (JdAM,'15) and FMS (CMFT,'14):
 - How cyclic is a function?
 - If we fix $\deg p_n \leq n$, how fast can $\|p_n f - 1\|_\alpha^2 \to 0$?

Optimizational viewpoint: Π_n orth. proj

\[
\Pi_n : D_\alpha \to V_n = \{pf : p \in P_n\}.
\]
BCLSS (JdAM,'15) and FMS (CMFT,'14):
How cyclic is a function?
If we fix $\deg p_n \leq n$, how fast can $\|p_n f - 1\|_2^2 \to 0$?

Optimizational viewpoint: Π_n ort. proj

$$\Pi_n : D_\alpha \to V_n = \{pf : p \in P_n\}.$$

$\Rightarrow \exists!\Pi_n(1)$, best approximation to 1 in V_n.
BCLSS (JdAM,’15) and FMS (CMFT,’14): How cyclic is a function? If we fix $\deg p_n \leq n$, how fast can $\|p_n f - 1\|_2^2 \to 0$?

Optimizational viewpoint: Π_n ort. proj

$$\Pi_n : D_\alpha \to V_n = \{pf : p \in \mathcal{P}_n\}.$$

$\Rightarrow \exists! \Pi_n(1)$, best approximation to 1 in V_n.

Definition

The *best approximant to $1/f$ of degree n* is the $p_n^* \in \mathcal{P} : p_n^* f = \Pi_n(1)$.
Optimizational viewpoint

- BCLSS (JdAM,’15) and FMS (CMFT,’14):
 How cyclic is a function?
 If we fix $\deg p_n \leq n$, how fast can $\|p_nf - 1\|_\alpha^2 \to 0$?

Optimizational viewpoint: Π_n ort. proj

$$\Pi_n : D_\alpha \to V_n = \{p f : p \in P_n\}.$$

$\Rightarrow \exists! \Pi_n(1)$, best approximation to 1 in V_n.

Definition

The best approximant to $1/f$ of degree n is the $p^*_n \in P : p^*_n f = \Pi_n(1)$.

- Now, cyclic $\iff \|p^*_n f - 1\|_\alpha^2 \to 0 \iff p^*_n(0) \to 1/f(0)$
BCLSS (JdAM,’15) and FMS (CMFT,’14):
How cyclic is a function?
If we fix \(\text{deg } p_n \leq n \), how fast can \(\| p_n f - 1 \|_2^2 \to 0 \)?

Optimizational viewpoint: \(\Pi_n \) ort. proj

\[
\Pi_n : D_\alpha \to V_n = \{ p f : p \in \mathcal{P}_n \}.
\]

\(\Rightarrow \exists! \Pi_n(1) \), best approximation to 1 in \(V_n \).

Definition
The *best approximant to \(1/f \) of degree \(n \) is the \(p_n^* \in \mathcal{P} : p_n^* f = \Pi_n(1) \).*

Now, cyclic \(\iff \| p_n^* f - 1 \|_2^2 \to 0 \iff p_n^*(0) \to 1/f(0) \)

BFKSS: When \(f \) not cyclic, \(p_n f \to \overline{l(0)}, \overline{l} \) “inner part of \(f \)”.
We solved these optimization problems:

Theorem (BCLSS, JdAM’15; FMS, CMFT’14)

\[p^*_n(z) = \sum_{j=0}^{n} c_j z^j \] only solution to \(Mc = b \) where

\[c = (c_j)_{j=0}^{n}, \quad M_{j,k} = \langle z^j f, z^k f \rangle_\alpha, \quad b_k = \langle 1, z^k f \rangle_\alpha. \]
Later we discovered a relation with OPs: Let ϕ_j of degree j defined by:

$$\langle \phi_j f, \phi_k f \rangle_\omega = \delta_{j,k},$$

and such that $\hat{\phi}_j(j) > 0$.

Applications to OPs
Applications to OPs

Later we discovered a relation with OPs: Let ϕ_j of degree j defined by:

$$\langle \phi_j f, \phi_k f \rangle_\omega = \delta_{j,k},$$

and such that $\hat{\phi}_j(j) > 0$.

Then we can obtain ϕ_j from p_j and p_{j-1} since:

Theorem (BKLSS, JLMS’16)

$$p_n(z) = f(0) \sum_{k=0}^{n} \phi_k(0) \phi_k(z)$$
Today several related questions:

- What happens on the boundary \mathbb{T}?
Today several related questions:

- What happens on the boundary \mathbb{T}?
- Can we obtain a closed formula for p_n in terms of a closed formula for f?
- Can we find p_n faster than inverting M for each n?

YES, if f is polynomial.
Today several related questions:

- What happens on the boundary \mathbb{T}?
- Can we obtain a closed formula for p_n in terms of a closed formula for f?
- Can we find p_n faster than inverting M for each n?
Plan

Today several related questions:

- What happens on the boundary \mathbb{T}?
- Can we obtain a closed formula for p_n in terms of a closed formula for f?
- Can we find p_n faster than inverting M for each n?

YES, if f polynomial.
Let us find $g = 1 - p_n f \in \mathcal{P}_{n+2}$ for $f(z) = (1 - z)(2 - z) = 2 - 3z + z^2$.
Let us find $g = 1 - p_nf \in \mathcal{P}_{n+2}$ for $f(z) = (1 - z)(2 - z) = 2 - 3z + z^2$.

$$g \perp z^t(2 - 3z + z^2) \quad t = 0, \ldots, n$$
Let us find $g = 1 - p_n f \in \mathcal{P}_{n+2}$ for $f(z) = (1 - z)(2 - z) = 2 - 3z + z^2$.

$$g \perp z^t (2 - 3z + z^2) \quad t = 0, \ldots, n$$

$$2\hat{g}(t) \omega_t - 3\hat{g}(t + 1) \omega_{t+1} + \hat{g}(t + 2) \omega_{t+2} = 0$$
Let us find $g = 1 - p_nf \in \mathcal{P}_{n+2}$ for $f(z) = (1 - z)(2 - z) = 2 - 3z + z^2$.

$$g \perp z^t(2 - 3z + z^2) \quad t = 0, ..., n$$

$$\Rightarrow 2\hat{g}(t)\omega_t - 3\hat{g}(t + 1)\omega_{t+1} + \hat{g}(t + 2)\omega_{t+2} = 0$$

$
\hat{g}(s)\omega_s$ satisfies a recurrence relation coming from f
(deg(f) + 1-terms)
Let us find $g = 1 - p_nf \in \mathcal{P}_{n+2}$ for $f(z) = (1 - z)(2 - z) = 2 - 3z + z^2$.

$$g \perp z^t(2 - 3z + z^2) \quad t = 0, ..., n$$

$$\Rightarrow 2\hat{g}(t)\omega_t - 3\hat{g}(t + 1)\omega_{t+1} + \hat{g}(t + 2)\omega_{t+2} = 0$$

- $\hat{g}(s)\omega_s$ satisfies a recurrence relation coming from f
 - $(\text{deg}(f) + 1\text{-terms})$
- $\hat{g}(s)\omega_s$ can be obtained from the zeros of f by a closed formula but g has $n + 3$ degrees of freedom and $n + 1$ restrictions
Let us find \(g = 1 - p_n f \in \mathcal{P}_{n+2} \) for \(f(z) = (1 - z)(2 - z) = 2 - 3z + z^2 \).

\[
g \perp z^t(2 - 3z + z^2) \quad t = 0, ..., n
\]

\[
\Rightarrow 2\hat{g}(t)\omega_t - 3\hat{g}(t + 1)\omega_{t+1} + \hat{g}(t + 2)\omega_{t+2} = 0
\]

- \(\hat{g}(s)\omega_s \) satisfies a recurrence relation coming from \(f \)
 \((\text{deg}(f) + 1\)-terms\)
- \(\hat{g}(s)\omega_s \) can be obtained from the zeros of \(f \) by a closed formula but \(g \) has \(n + 3 \) degrees of freedom and \(n + 1 \) restrictions
- Additional restrictions:

\[
(1 - p_n f)(1) = (1 - p_n f)(2) = 1
\]
A general closed formula

Theorem

\[\exists A_n = (A_{1,n}, \ldots, A_{d,n})^* \quad (\text{ind. of } k): \text{ for } k = 0, \ldots, n + d, \]

\[
d_{k,n} = \frac{1}{\omega_k} \sum_{i=1}^{d} A_{i,n} z_i^k.
\]

(1)
A general closed formula

Theorem

\[\exists A_n = (A_{1,n}, \ldots, A_{d,n})^* \text{ (ind. of } k\text{): for } k = 0, \ldots, n + d, \]

\[d_{k,n} = \frac{1}{\omega_k} \sum_{i=1}^{d} A_{i,n} z_i^k. \]

(1)

\(A_n \) only solution to

\[E_{Z,n} A_n = -v_0^*, \]

(2)

where

\[E_{Z,n,l,m} = \sum_{k=0}^{n+d} \frac{z_m^k z_l^k}{\omega_k}. \]

(3)
A general closed formula

Theorem

\[A_n = (A_{1,n}, ..., A_{d,n})^* \quad (\text{ind. of } k): \text{ for } k = 0, ..., n + d, \]

\[d_{k,n} = \frac{1}{\omega_k} \sum_{i=1}^{d} A_{i,n} z_i^k. \] \quad (1)

A_{n} \text{ only solution to}

\[E_{Z,n}A_n = -v_0^*, \] \quad (2)

where

\[E_{Z,n,l,m} = \sum_{k=0}^{n+d} \frac{z_m^k z_l^k}{\omega_k}. \] \quad (3)

So inverting a \(d \times d \) matrix we can obtain a closed formula for all \(n \). Also, for \(p_n \) and hence for \(\phi_k \).
Corollary

\[\text{dist}^2(1, \mathcal{P}_n f) = -\sum_{i=1}^{d} A_{i,n} = v_0 E_{Z,n}^{-1} v_0^*. \]

In particular,

\[\sum_{i=1}^{d} A_{i,n} \in [-1, 0]. \]

Also, if \(Z(f) \subset \mathbb{D} \), then

\[\text{dist}^2(1, [f]) = v_0 K_Z^{-1} v_0^*. \]
Corollary

\[\text{dist}^2(1, \mathcal{P}_n f) = - \sum_{i=1}^{d} A_{i,n} = v_0 E_{Z,n}^{-1} v_0^*. \]

In particular,

\[\sum_{i=1}^{d} A_{i,n} \in [-1, 0]. \]

Also, if \(Z(f) \subset \mathbb{D} \), then

\[\text{dist}^2(1, [f]) = v_0 K_Z^{-1} v_0^*. \]

Notice \(E_{Z,\infty,l,m} = k_{zm}(z_l). \)
Wiener norm

Wiener norm is a measure of absolute convergence of the Taylor series on the boundary:

$$A(\mathbb{T}) = \{ f : \sum |a_k| < \infty \}.$$
Wiener norm

Wiener norm is a measure of absolute convergence of the Taylor series on the boundary:

$$A(\mathbb{T}) = \{ f : \sum |a_k| < \infty \}.$$

Theorem

Let \(f \in \mathcal{P} : Z(f) \cap D = \emptyset \). \(\exists C \in \mathbb{R} : \forall n \in \mathbb{N}, \)

$$\|p_nf - 1\|_A \leq C.$$
Wiener norm

Wiener norm is a measure of absolute convergence of the Taylor series on the boundary:

\[A(\mathbb{T}) = \{ f : \sum |a_k| < \infty \}. \]

Theorem

Let \(f \in \mathcal{P} : Z(f) \cap \mathbb{D} = \emptyset \). \(\exists C \in \mathbb{R} : \forall n \in \mathbb{N}, \)

\[\| p_n f - 1 \|_A \leq C. \]

Hence, unif. bounded.
Wiener norm is a measure of absolute convergence of the Taylor series on the boundary:

\[A(\mathbb{T}) = \{ f : \sum |a_k| < \infty \}. \]

Theorem

Let \(f \in \mathcal{P} : Z(f) \cap \mathbb{D} = \emptyset \). \(\exists C \in \mathbb{R} : \forall n \in \mathbb{N}, \)

\[\|p_n f - 1\|_A \leq C. \]

Hence, unif. bounded.
Perhaps, true if \(f \in A(\mathbb{T})? \)
Let $Z(f) \cap \mathbb{D} = \emptyset$, $z_0 \in \overline{\mathbb{D}} \setminus Z(f)$. Then

$$(p_n f - 1)(z_0) \to 0 \quad \text{as} \quad n \to \infty.$$

Convergence is locally uniform.
Theorem

Let \(Z(f) \cap \mathbb{D} = \emptyset, \ z_0 \in \overline{\mathbb{D}} \setminus Z(f). \) Then

\[
(p_n f - 1)(z_0) \to 0 \quad \text{as} \quad n \to \infty.
\]

Convergence is locally uniform.

So polynomials are “well behaved” on the boundary... Are there “badly behaved” functions?
Theorem

Let $Z(f) \cap \mathbb{D} = \emptyset$, $z_0 \in \overline{\mathbb{D}} \setminus Z(f)$. Then

$$(p_nf - 1)(z_0) \to 0 \quad \text{as} \quad n \to \infty.$$

Convergence is locally uniform.

So polynomials are “well behaved” on the boundary... Are there “badly behaved” functions?
To be continued...
Coming up work BMS and Ivrii