PRIMER CURSO DE GRADO EN MATEMÁTICAS CÁLCULO II, 2009-10

Algunas preguntas típicas para el tercer examen parcial

El verdadero examen será diferente de este modelo y más breve.

Tiempo recomendado para practicar: 30-40 minutos (incluido el tiempo necesario para escribir las soluciones completas de los dos últimos problemas.

1. Si $c: \mathbb{R} \to \mathbb{R}^3$ es una trayectoria de clase C^1 , $c(t) = (x(t), y(t), z(t)) \neq (0,0,0)$ y $h: \mathbb{R}^3 \to \mathbb{R}$ es la función definida mediante la fórmula $h(t) = \|c(t)\|^2$, la derivada h'(t) viene dada por:

(A)
$$x(t)\frac{dx}{dt} + y(t)\frac{dy}{dt} + z(t)\frac{dz}{dt}$$
, (B) $2x(t)\frac{dx}{dt} + 2y(t)\frac{dy}{dt} + 2z(t)\frac{dz}{dt}$,

(C)
$$\frac{dx}{dt} + \frac{dy}{dt} + \frac{dz}{dt}$$
, (D) $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2$, (E) otra fórmula.

2. El plano tangente a la superficie

$$x^2 - 4y^2 - z = 0$$

en el punto (2,1,0) tiene la ecuación:

(A)
$$4x+8y-z=16$$
; (B) $4x-8y-z=0$; (C) $-4x+8y-z=16$;

(D)
$$4x + 8y - z = 0$$
; (E) otra.

3. La función

$$f(x,y) = x^2 - xy + y^2$$

tiene en el origen:

- (A) un mínimo local, (B) un máximo local, (C) un punto silla,
- (D) el origen no es un punto crítico de f, (E) ninguno de los anteriores es cierto.
 - 4. Escribir la fórmula de Taylor de primer orden de la función

$$f(x,y) = x\cos y$$

en el punto (1,0).

5. Hallar el punto del plano x + y + z = 1 más próximo al origen.