1. Calcula las siguientes primitivas:

a)
$$\int (x^2 + 3x) \left(5x^3 - \frac{8}{x^3}\right) dx$$
 b) $\int \left(e^x (e^x - e^{-x}) + \frac{1}{5x - 2}\right) dx$
c) $\int \left(3\sin(5x) - \frac{x}{2} - \frac{5}{1 + 4x^2}\right) dx$ d) $\int \left(\frac{x}{1 + x^2} + \frac{2}{(4x + 1)^2} + \frac{4}{\sqrt{1 - 2x^2}}\right) dx$

(Nota: puedes usar que $\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \arctan(x/a) + C$; $\int \frac{1}{\sqrt{a^2-x^2}} = \arcsin(x/a) + C$).

2. Calcula las siguientes primitivas (integrando por partes):

a)
$$\int (x+2)2^x dx$$
 b)
$$\int (x^2 - 2x)e^{-5x+3} dx$$
 c)
$$\int x \cos(5x) dx$$

d)
$$\int \sin x e^{-x} dx$$
 e)
$$\int x\sqrt{x+1} dx$$

3. Integrando por partes con $u = \operatorname{sen}^{n-1} x$, obtén la fórmula

$$\int \operatorname{sen}^n x \, dx = -\frac{1}{n} \operatorname{sen}^{n-1} x \cos x + \frac{n-1}{n} \int \operatorname{sen}^{n-2} x \, dx \qquad \text{para } n \ge 2 \text{ entero}$$

y úsala para calcular $\int_0^{\pi/2} \sin^5 x \ dx$.

4. Calcula las siguientes primitivas (usando el método de las fracciones simples):

$$\int \frac{x}{(x+1)(x-3)} dx, \quad \int \frac{x^3+1}{x^3+x} dx, \quad \int \frac{2}{(x-1)(x+3)^2} dx, \quad \int \frac{5x^2+5}{(x^2-1)(x^2+2x+2)} dx.$$

Sobre la integral y el teorema fundamental del Cálculo

5. Halla f'(x) si

a)
$$f(x) = \int_0^x (1+t^2)^{-2} dt$$
, b) $f(x) = \int_0^{x^2} (1+t^2)^{-3} dt$, c) $f(x) = \int_{x^3}^{x^2} (1+t^2)^{-3} dt$

6. Comprueba que

$$\int_0^x |t| \, dt = \frac{1}{2} x \, |x| \qquad \text{para todo } x \in \mathbb{R}.$$

7. Explica geométricamente por qué se cumple

$$\int_a^b f(a+b-x) \, dx = \int_a^b f(x) \, dx \, .$$

8. Supongamos que f es una función derivable en todo x y que satisface la ecuación

$$\int_0^x f(t) dt = -\frac{1}{2} + x^2 + x \operatorname{sen}(2x) + \frac{1}{2} \cos(2x) \quad \text{para todo} \quad x \ge 0.$$

Calcula $f(\pi/4)$ y $f'(\pi/4)$.

9. Calcula $\int_0^1 f(x) dx$, con f(x) igual a:

a)
$$\frac{1}{e^x + 4e^{-x}}$$
 b) $\frac{e^{2x}}{\sqrt{e^x + 1}}$ c) $\frac{4^x + 1}{2^x + 1}$ d) $\frac{x}{\sqrt{1 + x^4}}$

(Nota: puedes usar que $\int dx/\sqrt{x^2+1} = \ln(x+\sqrt{x^2+1}) + K$).

- 10. Calcula $\int_0^{\pi/4} f(x) dx$, con f(x) igual a:
 - a) tg(x) b) $cos^{4}(x)$ c) $tg^{2}(x)$ d) $sen^{5}(x) cos^{3}(x)$
- 11. Calcula las siguientes integrales impropias:

a)
$$\int_0^{\pi/2} \frac{1}{\cos^2(x)} dx$$
, b) $\int_0^\infty e^{-5x} dx$, c) $\int_0^1 \ln(x) dx$.

12. Expresa la integral $\int_0^\infty x^2 e^{-x^2} dx$ en términos de $\int_0^\infty e^{-x^2} dx$.

Cálculo de áreas

- 13. Calcula el área de la región limitada por
 - a) el eje X y la gráfica de $f(x) = \operatorname{sen} x$ en el intervalo $[0, 8\pi]$;
 - b) el intervalo $[0,\pi]$ del eje X y la gráfica de la función $f(x)=\lfloor x\rfloor$ (la función "parte entera", o "suelo").
- 14. Halla el área de la región limitada por las gráficas de los pares de funciones que se indican:

a)
$$f(x) = \frac{2}{4x^2 + 1}$$
 y $g(x) = 2|x|$,
b) $f(x) = x(e^x + 1)$ y $g(x) = x + x^2 e^x$,

- **15.** Dada $f(x) = x^2 2x + 7$, consideramos el triángulo curvilíneo T limitado entre las tangentes en x = 0 y x = 2 y la gráfica de f. Halla el área de T.
- **16.** Halla el área de la región limitada por la curva $y^2 = 3x$ y la recta 2y 2x + 3 = 0.
- 17. Dados $a, b \in \mathbb{R}^+$, calcula el área de la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 18. Calcula el área de la región plana limitada por la párabola de ecuación $(y-2)^2 = x-1$, la tangente a esta párabola en el punto (2,1) y el eje X.

_____ CÁLCULO DE ÁREAS Y VOLÚMENES DE CUERPOS DE REVOLUCIÓN

19. Deduce, usando integrales, que el volumen de la esfera es $\frac{4}{3}\pi r^3$ y que el volumen de un cono recto de altura h y radio de la base r es $\frac{1}{3}\pi r^2 h$.

- 20. Consideremos la región tridimensional infinita \mathcal{R} obtenida al hacer girar la gráfica de $f(x) = x^{-1}$ alrededor del eje X para $x \ge 1$. Comprueba que el volumen de \mathcal{R} es finito y sin embargo su área (lateral) es infinita. Por tanto, se da la paradoja de que pintar \mathcal{R} requiere un área infinita de pintura pero, si es transparente, basta verter un volumen finito de pintura en su interior.
- 21. Halla el volumen del cuerpo engendrado por la curva

$$y^2 = \frac{1}{9}x(x-3)^2$$
 con $0 \le x \le 3$

al girarla alrededor del eje X.

22. Halla el área de la región plana definida por las desigualdades:

$$2y - x^2 \ge 0$$
 $y 2x + y^2 \le 0$,

y el volumen del cuerpo engendrado por dicha region al girar alrededor del eje X.

EJERCICIOS EXTRA

23. Estudia la convergencia de las siguientes series mediante el criterio de la integral:

$$a)\sum_{n=2}^{\infty} \frac{1}{n\log^2 n},$$

b)
$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

a)
$$\sum_{n=2}^{\infty} \frac{1}{n \log^2 n}$$
, b) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$, c) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$,

- **24.** Una partícula se mueve a lo largo del eje X describiendo una trayectoria x = x(t) con velocidad $v(t) = At^2 + 1$. Calcula A sabiendo que x(1) = x(0).
- 25. La proporción x de moléculas de un gas en la atmósfera disminuye cuando la altura crece con una tasa de variación proporcional a x, es decir,

$$\frac{dx}{dh} = -Cx$$

donde h es la altura en kilómetros sobre el nivel del mar.

- a) Dividiendo entre x e integrando, halla una fórmula para x = x(h).
- b) Para el oxígeno, C = 0.07. ¿A qué altura la proporción de oxígeno es la mitad de la que hay a nivel del mar? Responde a la misma pregunta para el hidrógeno, para el que C = 0.006.
- c) Teniendo en cuenta que a nivel del mar hay unas 400 000 moléculas de oxígeno por cada una de hidrógeno, ¿a qué altura habrá más hidrógeno que oxígeno?