_____ Repaso de valores absolutos, ecuaciones y desigualdades

1. Indica los valores $x \in \mathbb{R}$ para los que se satisfacen las siguientes igualdades:

a)
$$x^2 - 10x + 21 = 0$$
,

b)
$$x^2 + 2 = 4x$$
,

c)
$$x^4 - 4 = 0$$
,

d)
$$\sqrt{1+x^3} = 3$$
,

e)
$$-1 + \cos x = 0$$
,

f)
$$\log \frac{x-e}{e} = 0$$
.

2. Encuentra todos los valores $x \in \mathbb{R}$ que satisfagan las siguientes desigualdades:

a)
$$|4x + 3| \le 1$$
,

b)
$$|x+1| \le |x-1|$$
,

c)
$$|x^2 - 5x + 6| < 2$$
,

d)
$$|x+1| + |x+3| < 5$$
,

e)
$$\frac{x-1}{(x+2)(x-3)} > 0$$
,

f)
$$\frac{x^2-2}{x^2-4} \le 0$$
,

g)
$$\frac{x^2+4}{x^2-2x} > 0$$
,

h)
$$\sqrt{x^2 - 6x + 9} < 1$$
.

- 3. Decide si las siguientes desigualdades son válidas para los valores de x e y que se indican:
 - a) $|x y| \le |x| + |y|$ para todo $x, y \in \mathbb{R}$.
 - b) $|x-y| \le |x| |y|$ para todo $x, y \in \mathbb{R}$.
 - c) $x^2 x + 1 \ge 0$ para todo $x \in \mathbb{R}$.
 - d) $x^4 + \frac{1}{x^4} \ge 2$ para todo $x \in \mathbb{R}^+$.

Inducción

- 4. Demuestra por inducción las siguientes fórmulas:
 - a) $1+3+5+\cdots+(2n-1)=n^2$.
 - b) $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n \cdot (n+1) = \frac{1}{3}n(n+1)(n+2)$.
 - c) $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- 5. Demuestra por inducción las siguientes afirmaciones:
 - a) $2^n > n^2$, para todo $n \ge 5$.
 - b) Desigualdad de Bernoulli: $(1+x)^n \ge 1 + nx$, para todo $x \ge -1$, $n \ge 1$.
 - c) $\cos 2nx = P_n(\cos x)$, para todo $n \ge 1$ y cierto polinomio P_n (cuyo grado depende de n).

6. Para cada uno de los conjuntos dados abajo, indica una cota superior y una inferior. Luego determina razonadamente el ínfimo y el supremo de cada uno de ellos.

a)
$$\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\},\$$

b)
$$\{\cos x + 1 : x \in \mathbb{R}\},\$$

7. Indica si los siguientes conjuntos están acotados inferior y superiormente y, en su caso, halla el ínfimo y el supremo.

a)
$$\{x \in \mathbb{R} : |x - 3| < 1\},\$$

b)
$$\{x \in \mathbb{R} : x^5 < 32\},\$$

c)
$$\{x^2 - 6x + 9 : x \in \mathbb{R}\},\$$

d)
$$\{(-1)^n - n^{-1} : n \in \mathbb{Z}^+\}.$$