Análisis Funcional

Cuarto de Licenciatura en Matemáticas, 2011-12

HOJA 10 DE PROBLEMAS

Operadores compactos

- 1. Ya hemos considerado en varias ocasiones el operador de desplazamiento: $S: l^2 \to l^2$, $S(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, ...)$.
 - (a) Hallar el operador adjunto, S^* ; es decir, el operador tal que $\langle Sx,y\rangle=\langle x,S^*y\rangle$, para todo $x,y\in l^2$.
 - (b) Es S compacto?
- **2**. Comprobar que el operador $T: C[0,1] \to C[0,1]$, definido mediante Tf(x) = x f(x), no es compacto.
- **3**. Sea $a=(a_n)_{n=1}^{\infty}\in l^{\infty}$ una sucesión fija.
 - (a) Comprobar que $T: l^p \to l^p$, $T(x_1, x_2, x_3, \ldots) = (a_1x_1, a_2x_2, a_3x_3, \ldots)$ define un operador lineal y acotado en l^p , $1 \le p < \infty$.
 - (b) Demostrar que $T\in\mathcal{K}(l^p)$ si y sólo si $a\in c_0$; es decir, si y sólo si $\lim_{n\to\infty}a_n=0$.
- 4. (a) Comprobar que la suma de dos operadores compactos es un operador compacto.
 - (b) Dados tres espacios de Banach X, Y y Z, demostrar que si $K \in \mathcal{K}(X,Y)$ y $T \in \mathcal{B}(Y,Z)$ entonces $TK \in \mathcal{K}(X,Z)$.
- **5**. (a) Sean X un espacio normado de dimensión finita, Y un espacio de Banach y $T \in \mathcal{B}(X,Y)$. Demostrar que $T \in \mathcal{K}(X,Y)$.
 - (b) Sea X un espacio normado de dimensión infinita y $T \in \mathcal{K}(X)$. Demostrar que T no tiene inverso acotado.
- **6**. (a) Demostrar que el operador de Volterra $T: C[a,b] \to C[a,b]$, definido mediante $Tf(x) = \int_a^x f(t) \, dt$, $x \in [a,b]$, es compacto. (Sugerencia. Aplicar el teorema de Ascoli-Arzelà.)
 - (b) En el espacio C[-1,1], consideremos las funciones f_n en la bola unidad $B_{C[-1,1]}$, lineales a trozos y tales que f(x)=0 cuando $-1\leq x\leq 0$ y f(x)=1 para $1/n\leq x\leq 1$. Hallar las funciones Tf_n y la función $g(x)=\lim_{n\to\infty}f_n(x)$, $-1\leq x\leq 1$.
 - (c) Ya sabemos que, por ser T compacto, el conjunto $T(B_{C[-1,1]})$ tiene que ser precompacto en C[-1,1]. Comprobar que, sin embargo, no es un conjunto compacto.