Variable Compleja I

Curso 2019-20

(3º de Matemáticas y 4º de Doble Grado Matemáticas-Informática)

HOIA 5 DE PROBLEMAS

Función inversa, logaritmos, raíces y potencias complejas

61) Calcule todos los posibles valores complejos de

a) $\log e$, **b)** $\log(-i)$, **c)** $\log(\sqrt{3}+i)$, **d)** $\log(1-i)^4$.

62) Calcule todos los valores de

- **a)** $i^{\sqrt{3}}$, **b)** 2^{-1-i} , **c)** $2^{\pi i}$, **d)** $(1-i)^i$.
- **63**) Resuelva las siguientes ecuaciones: **a**) $\cos z = 2$; **b**) $z^i = 1$.

Observación. Como muestra el resultado del apartado (a), a diferencia de la función real coseno, el coseno complejo no está acotado por uno. De hecho, es fácil ver que la función coseno no está acotada. ¿Cómo se comprueba esto?)

64) Para la función f dada, elija un dominio adecuado Ω de manera que f sea holomorfa en Ω y después calcule la derivada f'.

a) $f(z) = \log(1-z)$, **b)** $f(z) = \sqrt{e^z + 1}$, **c)** $f(z) = \sin\sqrt{z}$, **d)** $f(z) = z^{2z}$.

65) (Teorema del binomio para exponentes reales.) Sea α un número real con $\alpha \notin \mathbb{N}$ y definamos los números combinatorios generalizados como sigue:

$$\begin{pmatrix} \alpha \\ 0 \end{pmatrix} = 1, \quad \begin{pmatrix} \alpha \\ 1 \end{pmatrix} = \alpha, \quad \begin{pmatrix} \alpha \\ j \end{pmatrix} = \frac{\alpha(\alpha - 1) \cdots (\alpha - j + 1)}{j!} \text{ si } j > 1.$$

- a) Demuestre que el radio de convergencia de la serie $F(z) = \sum_{k=0}^{\infty} {\alpha \choose k} z^k$ es 1.
- **b)** Compruebe que $(1+z)F'(z) = \alpha F(z)$ en $\mathbb{D} = \{z : |z| < 1\}$.
- **c)** Concluya que $F(z) = (1+z)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} z^k$ si |z| < 1, tomando la determinación principal de w^{α} .

66) Sean Ω y D dos dominios en el plano tales que $0, \pm i \not\in \Omega, f: \Omega \to D$ una función holomorfa y biyectiva y $g: D \to \Omega$ su función inversa. Sabiendo que en cada $w \in D$ se cumple la identidad

$$g'(w) = \frac{g(w)^2 + 1}{g(w)},$$

calcule f'(z), para $z \in \Omega$.

67) Utilice el teorema de la función inversa para funciones holomorfas para demostrar el siguiente resultado probado ya con otro argumento: si Ω es un dominio plano, $f \in \mathcal{H}(\Omega)$ y $f(\Omega) \subset \mathbb{R}$ (es decir, f sólo toma valores reales), entonces f es idénticamente constante.

(**Indicación**. Este ejercicio requiere algunos conocimientos mínimos de Topología, más concretamente de homeomorfismos entre conjuntos planos.)

1