Variable Compleja I, Curso 2015-16

(3º de Grado en Matemáticas y 4º de Doble Grado en Ing. Informática y Matemáticas)

HOJA 3 DE PROBLEMAS

Integración compleja: propiedades y estimaciones básicas

- 1) Calcule $\int_{\gamma} |z| \overline{z} dz$, donde γ es el camino cerrado compuesto por la semicircunferencia superior de |z| = 1 y el segmento $-1 \le x \le 1$; y = 0, con orientación positiva.
- 2) ¿Es cierto que $\text{Re}\{\int_{\gamma}f(z)dz\}=\int_{\gamma}\text{Re}\{f(z)\}dz$ para cualquier f, función continua con valores complejos? Razone la respuesta.
- 3) Calcule $\int_{\gamma} \frac{z}{\bar{z}} dz$, donde γ es el camino que va de -3 a -1 a lo largo del eje real, después va de -1 a 1 siguiendo la semicircunferencia superior del círculo unidad, luego va de 1 a 3 de nuevo a lo largo del eje real, y regresa a -3 por la semicircunferencia superior del círculo |z| = 3.
- 4) Demuestre que si |a| < R, entonces

$$\int_{|z|=R} \frac{|dz|}{|z-a||z+a|} \le \frac{2\pi R}{R^2 - |a|^2}.$$

5) Sea γ el cuadrado en $\mathbb C$ con vértices $\pm 1 \pm i$. Acote el valor absoluto de las siguientes integrales:

(i)
$$\int_{|z|=1} \frac{dz}{2-z^3}$$

(ii)
$$\int_{|z|=1} \frac{e^z}{z^2} dz$$

(i)
$$\int_{|z|=1} \frac{dz}{2-z^3}$$
, (ii) $\int_{|z|=1} \frac{e^z}{z^2} dz$ (iii) $\int_{\gamma} (\cos z)^2 dz$

6) Sea γ el arco del círculo |z|=2 comprendido en el primer cuadrante. Verifique la estimación

$$\left| \int_{\gamma} \frac{dz}{z^2 + 1} \right| \le \frac{\pi}{3}.$$

Teorema de Green en forma compleja

7) Sea P(z) un polinomio y sea γ el círculo $\{z \in \mathbb{C} : |z| = R\}$ orientado positivamente. Pruebe que

$$\int_{\gamma} \overline{P(z)} dz = 2\pi i R^2 \overline{P'(0)}.$$

8) Sea γ un camino simple y cerrado que encierra un área S. Demuestre que

$$S = \frac{1}{i} \int_{\gamma} x dz = -\int_{\gamma} y dz = \frac{1}{2i} \int_{\gamma} \bar{z} dz.$$

9) Sea γ un camino cerrado simple en \mathbb{D} , y f una función holomorfa en \mathbb{D} e inyectiva. Demuestre que $\int_{\mathcal{V}} f(z)f'(z)dz$ es un número imaginario puro.

Ayuda: Escriba f = u + iv y use un cálculo directo (largo) con la fórmula de Green, o bien aplique un cambio de variables adecuado y relacione la integral con un área.

1

Teorema y fórmula integral de Cauchy y algunas de sus aplicaciones

10) Calcule las siguientes integrales, justificando las respuestas:

a)
$$\int_{|z-1|=2} \frac{dz}{z^2+3i}$$
, **b)** $\int_{|z-1|=2} \frac{dz}{z^2+16}$, **c)** $\int_{|z|=1} \frac{z^2 \sin z \, dz}{(z+a)^3}$, $|a| \neq 1$.

11) Sea γ la circunferencia unidad orientada positivamente. Calcule las siguientes integrales:

$$\text{(i)} \ \int_{\gamma} z \sec z^2 dz \,, \qquad \text{(ii)} \ \int_{\gamma} \frac{\sin z}{z} dz \,, \qquad \text{(iii)} \ \int_{\gamma} \frac{1-\cos z}{z^2} dz \,, \qquad \text{(iv)} \ \int_{\gamma} \frac{e^z}{z^2} dz \,, \qquad \text{(v)} \ \int_{\gamma} \frac{2}{1-4z^2} dz \,.$$

12) Calcule las siguientes integrales trigonométricas usando la integración sobre la circunferencia unidad y la fórmula integral de Cauchy:

a)
$$\int_0^{2\pi} \frac{1}{2 + \cos t} dt$$
, **b)** $\int_0^{2\pi} \frac{\cos(2t)}{5 - 4 \sin t} dt$, **c)** $\int_0^{2\pi} e^{\cos t} \cos(\sin t) dt$.

- 13)* Calcule la integral $\int_0^{2\pi} (\cos \theta)^{2n} d\theta$. ¿Cuál es el límite $\lim_{n \to \infty} \sqrt{n} \int_0^{2\pi} (\cos \theta)^{2n} d\theta$? Sugerencia: Calcule la integral de línea $\int_{|z|=1} \left(z+\frac{1}{z}\right)^{2n} \frac{dz}{z}$ usando el desarrollo binomial.
- 14) Sea Ω un dominio en $\mathbb C$ con la frontera $\partial\Omega$ y f una función holomorfa en Ω tal que, para un cierto M>0, se tiene $|f(z)|\leq M$ para todo $z\in\Omega$. Pruebe que

$$|f'(z)| \le \frac{M}{\operatorname{distancia}(z, \partial \Omega)}$$

Sugerencia: Sea $r < \text{distancia}(z, \partial \Omega)$. Use la fórmula integral de Cauchy en D(z; r).

- **15)** Demuestre que si f es holomorfa en un abierto que contiene al disco unidad cerrado $\overline{\mathbb{D}} = \{z : |z| \le 1\}$ y si f(z) = 0 cuando |z| = 1, entonces f(z) = 0 para todo $z \in \overline{\mathbb{D}}$. **Ayuda:** Fórmula integral de Cauchy.
- **16**) Demuestre que si $a, b \in \mathbb{C}$ y R > 0 es tal que |a| < R, |b| < R, entonces

$$\frac{1}{2\pi} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz = \frac{f(a)-f(b)}{a-b}.$$

Luego use esta fórmula para probar el Teorema de Liouville: *toda función entera y acotada es constante*. (**Ayuda:** Use fracciones simples y después haga que $R \to +\infty$.)

- 17)* Sea f una función holomorfa en $\{z \in \mathbb{C} : |z| < R_0\}$. Demuestre las siguientes fórmulas:
- a) Si γ es la circunferencia $\{z \in \mathbb{C} : |z| = R\}$ con $R < R_0$ y |w| < R, entonces

$$f(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{R^2 - |w|^2}{(z - w)(R^2 - z\overline{w})} f(z) dz$$

b) Si $0 \le r < R < R_0$, entonces

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - \psi) + r^2} f(Re^{i\psi}) d\psi$$

2