Hoja de repaso

1. Desarrolle las siguientes expresiones:

$$(\sqrt{2} - \frac{1}{\sqrt{2}})^2$$
, $(\sqrt{3} - 1)^3$, $(2x + 1)^3$, $(n - 2)^3$

y calcule su valor exacto cuando sea posible.

2. Factorice completamente las siguientes expresiones:

$$x^4 - 1$$
, $x^3 - 27$, $x^6 - 64$.

3. Simplifique las siguientes expresiones razionalizando el denominador:

$$\frac{1}{\sqrt{7}+2}$$
, $\frac{1}{\sqrt{n}-\sqrt{n-1}}$, $\frac{1}{\sqrt[3]{n}-1}$.

4. Encuentre un cero entero (o racional) del polinomio dado y luego una factorización del mismo:

$$x^3 + x + 2$$
, $2x^2 + 7x + 6$, $3x^3 - x^2 + 3x - 1$.

5. Resuelva las siguientes ecuaciones:

$$x^{2} - 6x + 4 = 0$$
, $t^{4} + t^{2} - 6 = 0$, $3x^{3} - x^{2} + 3x - 1 = 0$.

6. Resuelva las siguientes ecuaciones:

$$\sqrt{x+2} = 3$$
, $\sqrt{x+2} + \sqrt{x-2} = 2$.

7. Lo mismo para las ecuaciones

$$\sqrt{x+1} + \sqrt{x-1} = 2$$
, $\sqrt{1+x} + \sqrt{1-x} = 2$.

¿Existe alguna diferencia entre sus soluciones?

8. Diga para qué valores de x se tiene que

- \bullet sen x = 0;
- conteste la misma pregunta para $\cos x = -1$;

- idem para $\tan x = 1$.
- 9. Usando la identidad sen² $a + \cos^2 a = 1$, escriba sen³ $x \cos^2 x$ como suma de términos de la forma sen $x \cos^n bx$, donde n, b son enteros (b puede variar de término a término).
- **10.** Demuestre la identidad $1 + \tan^2 a = \sec^2 a$ y úsela para escribir $\sec^5 x$ como suma de términos de la forma $\sec x \tan^n bx$ donde n, b son enteros (b puede variar de término a término).
- 11. El coseno y el seno hiperbólico de un número x se definen como

$$\cosh x = \frac{e^x + e^{-x}}{2}, \qquad \operatorname{senh} x = \frac{e^x - e^{-x}}{2}.$$

Demuestre que

$$\cosh^2 x - \sinh^2 x = 1.$$