El programa y el horario de los dos cursos
El aula: 420 del Módulo 17 de la Fac. de Ciencias, UAM
Curso I.
Towards a numerization of the Gelfand
theory
Los miércoles 1, 8, 15 y 22 de octubre, de 14:30 a 15:30
1) Why there
exists no constructive proof to Wiener's 1/f theorem?
2)
Invisible spectrum and critical constants of an algebra
3) A corona
theorem for H^infty trace algebras
4)
Invisible spectrum of Fourier multipliers under the Muckenhoupt
condition
References
1. N.Wiener and H.R.Pitt, On absolutely convergent Fourier-Stieltjes
transforms,
Duke Math. J., 4:2 (1938), 420-436.
2. N.Nikolski, In search for the
invisible spectrum, Ann. Inst.
Fourier,
49:6 (1999), 1925-1998.
3. P.Gorkin, R.Mortini, N.Nikolski, Norm controlled inversions and a
corona
theorem for H∞-quotient algebras, J. Funct.
Anal. 255 (2008),
no. 4,
854–876.
4. N.Nikolski and I.Verbitsky,
Fourier multipliers for weighted L2
spaces
with Lévy-Khinchin-Schoenberg
weights, arXiv:1404.4380v1 (2014).
Curso II.
Sublinear dimension growth in the KMT (Kreiss Matrix Theorem)
Los jueves 2, 9, 16 y 23 de octubre, de 14:30 a 15:30
1) The KMT
and stable Runge-Kutta approximations
2)
Bernstein-type inequalities for rational functions
3) Basis and
unconditional basis constants (following McCarthy-Schwartz)
4) Sublinear dimension growth in the KMT.
References
1. M.N.Spijker, Numerical stability, stability estimates and
related
conditions
in the numerical solution of initial value problems,
Lecture
Notes Leiden, 1998; http://www.math.leidenuniv.nl/spijker/
2. C.A.McCarthe and J.T.Schwartz, On the norm of a finite Boolean
algebra
of projections, and applications to theorems of Kreiss
and
Morton,
Comm. Pure Appl. Math., 18 (1965), 191-201.
3. N.Nikolski, Sublinear dimension growth in the Kreiss
matrix
theorem,
Algebra i Analiz 25 (2013),
no. 3, 3-51; reprinted in: St.
Petersburg Math. J. 25 (2014), no. 3, 361–396.