- 1. (2,5 puntos) Sea a una constante positiva.
- a) Utilizando los teoremas del curso, demostrar que

$$\int_0^\infty \frac{xe^{-x} \, \mathrm{d}x}{1 - e^{-ax}} = \sum_{n=0}^\infty \frac{1}{(1 + na)^2}.$$

b) Demostrar que

$$\int_0^\infty \frac{xe^{-x} \, \mathrm{d}x}{1 + e^{-ax}} = \sum_{n=0}^\infty \frac{(-1)^n}{(1 + na)^2}.$$

2. (2,5 puntos) Sean X,Y dos conjuntos disjuntos, y sea $Z=X\cup Y$. Dadas medidas exteriores finitas μ_* en X y ν_* en Y, definimos para todo conjunto $A\subset Z$

$$\eta_*(A) = \mu_*(A \cap X) + \nu_*(A \cap Y).$$

- a) Demostrar que η_* es una medida exterior en Z.
- b) Demostrar que un subconjunto A de Z es η_* -medible si y solo si $A \cap X$ es μ_* -medible y $A \cap Y$ es ν_* -medible.
- 3. (2,5 puntos) Dadas unas funciones $f, g \in L^1([0,1], dt)$, definimos

$$F(x) = \int_{[0,x]} f(t) dt, \quad G(x) = \int_{[0,x]} g(t) dt.$$

- a) ¿Es cierto que F y G son continuas en [0,1]? Dar un ejemplo en el que F no es diferenciable en algún punto del intervalo [0,1].
- b) Demostrar que $\int_{[0,1]} f(x)G(x) dx = F(1)G(1) \int_{[0,1]} F(x)g(x) dx$ (es una extensión de la fórmula de integración por partes a un contexto más amplio).

Indicación: comprobar que se puede aplicar el teorema de Fubini a la función H(x, y), definida por H(x, y) = f(x)g(y), si x < y, y H(x, y) = 0, si $x \ge y$.

- **4.** (2,5 puntos) Sea μ una medida finita en un espacio medible (X, \mathcal{A}) y sean a, b dos funciones integrables no negativas en X. Consideramos las medidas $d\alpha = a \, \mathrm{d} \mu \, \mathrm{y} \, d\beta = b \, \mathrm{d} \mu$.
- a) Demostrar que α , β son mutuamente singulares si y solo si ab=0 en μ -casi todo punto.
- b) Ponemos $N_a = \{x \in X : a(x) = 0\}$, $N_b = \{x \in X : b(x) = 0\}$. Demostrar que α es absolutamente continua respecto de β si y solo si $\mu(N_b \setminus N_a) = 0$ (en otras palabras, si $N_b \subset N_a \cup E$, donde E es un conjunto de medida 0).
- c) Sea χ_{N_b} la función característica del conjunto N_b . Ponemos f(x) = 0, si $x \in N_b$, y f(x) = a(x)/b(x), si $x \in X \setminus N_b$. Comprobar que

$$\alpha = f\beta + a\chi_{N_b}\mu.$$

Demostrar que esta es la descomposición de Radón - Nikodym de α en las partes absolutamente continua y mutuamente singular respecto de β .