Prueba de Selección 7 de marzo de 2024, de 17:00 a 20:00

Soluciones

Apellidos, Nombre, curso, grado, email _

1) On the plane, $n \ge 5$ points are given, such that no three of them are collinear. Prove that one can find at least $\binom{n-3}{2}$ different convex quadrilaterals with vertices at these points.

Sol.: Given two points $F \neq G$, we denote by FG the straight line passing through these points and by [FG] the segment of this line with endpoints in F and G.

Fix three points A, B, C from the given set that are vertices of the convex hull of this set. One can choose $\binom{n-3}{2}$ pairs, which are subsets of the rest of the given points.

The line DE intersects 0 or 2 sides of the triangle $\triangle ABC$. We assert that one can choose a side s of $\triangle ABC$ so that DE does not intersect s and

(*) the points D, E, and the two endpoints of s are vertices of a convex quadrilateral.

This will imply the statement of the problem.

Denote by ℓ the straight line containing s. We will use the following

Fact: if the line DE does not intersect the segment s and the points D, E are on the same side of ℓ , then D, E, and the two endpoints of s are vertices of a convex quadrilateral.

To see (*), notice first that the lines AB, BC and AC divide the plain into 7 regions. Three of these regions are infinite angles. By our choice of A, B, C, the points D and E do not belong to these angles (and do not lie on the lines AB, BC and AC). So D, E belong to the four resting regions. One of them is the triangle ABC and the other three, which we denote as W_1 , W_2 and W_3 , are infinite.

We consider the following cases.

<u>Case 1:</u> D, E belong to the same region. Then for any choice of s as above, D, E are on the same side of ℓ , and by the above Fact, (*) holds.

<u>Case 2:</u> One of the points D, E belongs to the triangle ABC, and the other point to an infinite region, say, W_1 . Choose s in any way as above. The union of the closures of $\triangle ABC$ and W_1 is an angle U, and the intersection of their boundaries is one of the sides of the triangle, say, t. Since t separates the angle U into two connected components, and D, E lie in different components, the segment [DE] crosses t. Hence ℓ contains one of the sides of the angle U, and therefore D, E lie on the same side of ℓ . The above Fact gives (*).

<u>Case 3:</u> D, E belong to two different infinite regions, say, W_1 and W_2 . We can assume that C belongs to both boundaries ∂W_1 , ∂W_2 , A is a vertex of W_1 and B is a vertex of W_2 . Then the intersection of the line AB with each of the boundaries ∂W_1 , ∂W_2 is a half-line. To fix notation, we assume that $D \in W_1$, $E \in W_2$.

Since D, E are on the same side of AB, [DE] does not intersect [AB]. We set s = [AB]. If s is parallel to DE, A, B, D, E are vertices of a convex quadrilateral. If not, denote by P the intersection point of the lines AB and DE, so that D, E and P are on the same line.

Suppose $P \in s$. It cannot happen that $D \in [PE]$, for in this case E, P are on the same side of the line AC and D is on the other side. Similarly, $E \notin [PD]$. It has been seen already that $P \notin [DE]$.

This contradiction shows that in reality $P \notin s$. Hence the above Fact yields that A, B, D, E are vertices of a convex quadrilateral.

Since these are all possible cases, the proof is concluded.

Remark: Now I know a little bit simpler argument, choosing A, B, C to be three consecutive vertices of the convex hull of the n given points. - Dmitri

2) Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that f(0)=0 and f(x)>0 for $0 < x \le 1$. Prove that there exists a convex function $g:[0,1] \to \mathbb{R}$ such that g(0)=0 and $0 < g(x) \le f(x)$ for $0 < x \le 1$.

Sol.: First notice that, whenever $\{h_t\}_{t\in T}$ is a family of convex functions on [0,1] such that

$$g(x) := \sup_{t \in T} h_t(x)$$

is finite for all $x \in [0,1]$, the function g is convex. (Here T is an index set.) Indeed, for any $s \in (0,1)$, any $x,y \in [0,1]$ and any $t \in T$,

$$h_t(sx + (1-s)y) \le sh_t(x) + (1-s)h_t(y) \le sg(x) + (1-s)g(y).$$

Taking the supremum over t in the left hand side, we get

$$g(sx + (1-s)y) \le sg(x) + (1-s)g(y),$$

which shows that g is convex on [0,1]. The required function g will be constructed in this way. Namely, for $t \in T := (0,1]$, we define

$$h_t(0) = h_t(t) = 0, \quad h_t(1) = \min_{x \in [t,1]} f(x) > 0,$$

and continue the function h_t to [0,1] as a linear function separately on the intervals [0,t] and [t,1]. Then for each $t \in (0,1]$, h_t is convex and $0 \le h_t \le f$ on [0,1]. Next put $g(x) = \sup_{0 < t \le 1} h_t(x)$. Then g is convex and $0 \le g \le f$ on [0,1]. Since $h_t(x) > 0$ whenever 0 < t < x, it follows that g > 0 on (0,1]. So g satisfies all the required properties.

Remark It is known that any convex function, defined on some interval, is continuous at any point except possibly at the endpoints of this interval. It is clear that g is continuous at 0. Since g is convex, g(0) = 0 and g > 0 on (0,1], it follows that g increases on [0,1]. So, if one redefines the value g(1) as $\lim_{x\to 1} g(x)$, one gets a continuous convex function, satisfying all the requirements.

Sketch of Sol 2: Put $h(x) = \min_{t \in [x,1]} f(t)$. Then h is an increasing function and is continuous (it has to be proved), and $0 < h \le f$ on (0,1]. Therefore $g(x) := \int_0^x h(t) dt$ is convex. It is easy to check that $0 < g \le h \le f$ on (0,1].

3) Alice and Bob play a game in which they take turns removing stones from a heap that initially has n stones. The number of stones removed at each turn must be one less than a prime number. The winner is the player who takes the last stone. Alice plays first. Prove that there are infinitely many n such that Bob has a winning strategy. (For example, if n = 17, then Alice might take 6 leaving 11; then Bob might take 1 leaving 10; then Alice can take the remaining stones to win.)

Sol.: Suppose on the contrary that the set B of values of n for which Bob has a winning strategy is finite; for convenience, we include n=0 in B, and write $B=\{b_1,\ldots,b_m\}$. Then for every nonnegative integer n not in B, Alice must have some move on a heap of n stones leading to a position in which the second player wins. That is, every nonnegative integer not in B can be written as b+p-1 for some $b \in B$ and some prime p. However, there are numerous ways to show that this cannot happen.

First solution: Let t be any integer bigger than all of the $b \in B$. Then it is easy to write down t consecutive composite integers, e.g., $(t+1)! + 2, \ldots, (t+1)! + t + 1$. Take n = (t+1)! + t; then for each $b \in B$, n - b + 1 is one of the composite integers we just wrote down.

Second solution: Let p_1, \ldots, p_{2m} be any prime numbers; then by the Chinese remainder theorem, there exists a positive integer x such that

$$x - b_1 \equiv -1 \pmod{p_1 p_{m+1}}$$

$$\dots$$

$$x - b_n \equiv -1 \pmod{p_m p_{2m}}.$$

For each $b \in B$, the unique integer p such that x = b + p - 1 is divisible by at least two primes, and so cannot itself be prime.

Third solution: Put $b_1 = 0$, and take $n = (b_2 - 1) \cdots (b_m - 1)$; then n is composite because $3, 8 \in B$, and for any nonzero $b \in B$, $n - b_i + 1$ is divisible by but not equal to $b_i - 1$. (One could also take $n = b_2 \cdots b_m - 1$, so that $n - b_i + 1$ is divisible by b_i .)

4) Define a sequence by $a_0 = 1$, together with the rules $a_{2n+1} = a_n$ and $a_{2n+2} = a_n + a_{n+1}$ for each integer $n \ge 0$. Prove that every positive rational number appears in the set

$$\left\{\frac{a_{n-1}}{a_n}: n \ge 1\right\} = \left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \dots\right\}.$$

Sol.: It suffices to prove that for any relatively prime positive integers r, s, there exists an integer n with $a_n = r$ and $a_{n+1} = s$. We prove this by induction on r + s, the case r + s = 2 following from the fact that $a_0 = a_1 = 1$. Given r and s not both 1 with $\gcd(r,s) = 1$, we must have $r \neq s$. If r > s, then by the induction hypothesis we have $a_n = r - s$ and $a_{n+1} = s$ for some n; then $a_{2n+2} = r$ and $a_{2n+3} = s$. If r < s, then we have $a_n = r$ and $a_{n+1} = s - r$ for some n; then $a_{2n+1} = r$ and $a_{2n+2} = s$.