Hoja 6

1) A language has an alphabet consisting of n letters. Each word of this language has no more than m letters, and no one of the words is a beginning of another one. (It is understood that the beginnings of a word $L_{1} L_{2} \ldots L_{k}$, where $L_{1}, L_{2}, \ldots, L_{k}$ are letters of the alphabet, are words of the form $L_{1} L_{2} \ldots L_{s}$, where $1 \leq s \leq k$.)

Show that

$$
\sum_{k=1}^{m} \frac{a_{k}}{n^{k}} \leq 1
$$

here a_{k} is the number of words of the language that have exactly k letters.
2) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be two sequences of real numbers satisfying $\limsup a_{n}=$ $\limsup _{n \rightarrow \infty} b_{n}=+\infty$. Show that there are indices m and n such that $\left|a_{n}-a_{m}\right|>1$ and $\left|b_{n}^{n \rightarrow \infty}-b_{m}\right|>1$. $n \rightarrow \infty$
3) Find al positive integers $n>2$ such that n divides the number

$$
\prod_{\substack{p<q<n, p, q \text { primes }}}(p+q)
$$

4) Let u be a positive continuous function on $[0,+\infty)$ such that $\int_{0}^{\infty} \frac{d x}{u(x)}<\infty$. Prove that

$$
\lim _{A \rightarrow \infty} \frac{1}{A^{2}} \int_{0}^{A} u(x) d x=\infty
$$

