Hoja 5

Problem 1. a) Let A, B be real square matrices of size 2013 such that $A B=0$. Prove that at least one of the matrices $A+A^{T}, B+B^{T}$ is singular.
b) Is this assertion true for complex matrices?

Problem 2. Consider $P(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$, where $a_{1}<a_{2}<\cdots<a_{n}$ are integers. Prove that $P(x)^{2}+1$ is irreducible in $\mathbb{Z}[x]$ (i.e., prove that if $Q(x)$ and $R(x)$ are polynomials with integer coefficients such that $P(x)^{2}+1=Q(x) R(x)$, then either $Q \equiv \pm 1$ or $R \equiv \pm 1$.

Problem 3. Let a, b, c be positive integers such that a divides b^{3}, b divides c^{3}, and c divides a^{3}. Prove that $a b c$ divides $(a+b+c)^{13}$.

Problem 4. Let f and g be (real-valued) functions defined on an open interval containing 0 , with g nonzero and continuous at 0 . If $f g$ and f / g are differentiable at 0 , must f be differentiable at 0 ?

Problem 5. Prove that for $n \geq 2$,

$$
\overbrace{2^{2^{\cdots 2}}}^{n \text { terms }} \equiv \overbrace{2^{2^{\cdots 2}}}^{n-1 \text { terms }}(\bmod n) .
$$

Problem 6. Let D_{n} denote the value of the $(n-1) \times(n-1)$ determinant

$$
\left[\begin{array}{cccccc}
3 & 1 & 1 & 1 & \cdots & 1 \\
1 & 4 & 1 & 1 & \cdots & 1 \\
1 & 1 & 5 & 1 & \cdots & 1 \\
1 & 1 & 1 & 6 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 & \cdots & n+1
\end{array}\right]
$$

Is the set $\left\{\frac{D_{n}}{n!}\right\}_{n \geq 2} \quad$ bounded?

