Hoja 5

Problem 1. a) Let A, B be real square matrices of size 2013 such that AB = 0. Prove that at least one of the matrices $A + A^T$, $B + B^T$ is singular.

b) Is this assertion true for complex matrices?

Problem 2. Consider $P(x) = (x - a_1)(x - a_2) \cdots (x - a_n)$, where $a_1 < a_2 < \cdots < a_n$ are integers. Prove that $P(x)^2 + 1$ is irreducible in $\mathbb{Z}[x]$ (i.e., prove that if Q(x) and R(x) are polynomials with integer coefficients such that $P(x)^2 + 1 = Q(x)R(x)$, then either $Q \equiv \pm 1$ or $R \equiv \pm 1$.

Problem 3. Let a, b, c be positive integers such that a divides b^3 , b divides c^3 , and c divides a^3 . Prove that abc divides $(a + b + c)^{13}$.

Problem 4. Let f and g be (real-valued) functions defined on an open interval containing 0, with g nonzero and continuous at 0. If fg and f/g are differentiable at 0, must f be differentiable at 0?

Problem 5. Prove that for $n \ge 2$,

$$n \underbrace{\operatorname{terms}}_{2^{2\cdots^2}} n - 1 \operatorname{terms}}_{2^{2\cdots^2}} \pmod{n}.$$

Problem 6. Let D_n denote the value of the $(n-1) \times (n-1)$ determinant

Γ	3	1	1	1		1]
	1	4	1	1		1
	1	1	5	1		1
	1	1	1	6	· · · · · · · ·	1
	÷	÷	÷	÷	·	÷
	1	1	1	1	•••	n+1

Is the set $\left\{\frac{D_n}{n!}\right\}_{n\geq 2}$ bounded?