Hoja 4

1) Let $M, N \in M_{2}(\mathbb{C})$ be two nonzero matrices such that

$$
M^{2}=N^{2}=0_{2} \text { and } M N+N M=I_{2}
$$

where O_{2} is the 2×2 zero matrix and I_{2} the 2×2 unit matrix. Prove that there is an invertible matrix $A \in M_{2}(\mathbb{C})$ such that

$$
M=A\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) A^{-1} \text { and } N=A\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) A^{-1}
$$

2) Let $P \in \mathbb{Z}[x]$ be a polynomial, which has a rational root r. Prove that if $|P(n)|=|P(m)|=1$ for two distinct integers n and m, then $r=(n+m) / 2$.
3) Does there exist a continuous function f on $(0,1)$ such that

$$
0<\lim _{t \rightarrow 0^{+}} \frac{f(x+t)-f(x)}{t^{2}}<\infty
$$

for any $x \in(0,1)$?
4) Let d be a real number. For each integer $m \geq 0$, define a sequence $\left\{a_{m}(j)\right\}, j=0,1,2, \ldots$ by the condition

$$
a_{m}(0)=d / 2^{m}, \quad a_{m}(j+1)=\left(a_{m}(j)\right)^{2}+2 a_{m}(j), \quad j \geq 0 .
$$

Evaluate $\operatorname{lím}_{n \rightarrow \infty} a_{n}(n)$.
5) Let n, k be positive integers such that n is not divisible by 3 and $k \geq n$. Prove that there exists a positive integer m which is divisible by n and the sum of its digits in decimal representation is k.
6)

1. Prove that an 8×8 chessboard cannot be covered without overlapping by fifteen 1×4 polyminos and the single polymino shown in Figure 1.
2. Prove that a 10×10 board cannot be covered without overlapping by the polyminos shown in Figure 2.
3. Prove that a 102×102 board cannot be covered without overlapping by 1×4 polyminos.

Figure 1
Figure 2

