Hoja 3

1) Let $c_{0}>0, c_{1}>0$, and $c_{n+1}=\sqrt{c_{n}}+\sqrt{c_{n-1}}$ for $n=1,2, \ldots$ Prove that the sequence $\left\{c_{n}\right\}$ has a limit and find this limit.
2) The set \mathbb{N} of natural numbers is partitioned into two infinite subsets, A and B. Prove that for any real $c>0$ there exist increasing sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that $a_{n} \in A$, $b_{n} \in B$, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$.
3) Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)$ is irrational for x rational and is rational for x irrational?
4) Let $n>1$ be an odd integer. Prove that n does not divide $3^{n}+1$.
5) Determine all rational solutions of the equation $x^{3}+y^{3}=x^{2}+y^{2}$.
6) Let p be a prime greater than 5 . Prove that $p-4$ cannot be the fourth power of an integer.
