Hoja 2

1) Let $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$ positive real numbers. Prove that

$$
\prod_{k=1}^{n}\left(a_{k}+b_{k}\right) \leq \sqrt[n]{\prod_{i, h=1}^{n}\left(a_{i}+b_{j}\right)}
$$

2) Find all the solutions to the equation

$$
1!+2!+3!+\ldots+n!=m^{2}
$$

for m, n positive integers.
3) Prove that the sequence $1,11,111, \ldots$ contains an infinite subsequence whose terms are pairwise relatively prime.
4) The sequence $\left\{x_{n}\right\}$ of positive real numbers decreases and satisfies $\sum_{n=1}^{\infty} x_{n}=\infty$. Prove that

$$
\sum_{n=1}^{\infty} x_{n} \exp \left(-\frac{x_{n}}{x_{n+1}}\right)=\infty
$$

5) Prove that the expression

$$
\frac{\operatorname{gcd}(m, n)}{n}\binom{n}{m}
$$

is an integer for all pairs of integers $n \geq m \geq 1$.
6) A real sequence $\left\{x_{n}\right\}_{n \geq 1}$ satisfies the inequalities $\left|x_{n}-x_{m}\right|>\frac{1}{n}$ for any $n<m$. Prove that this sequence is unbounded.

