Hoja 1

1) Prove that

$$
(1+1 / 2)(1+1 / 4) \cdot \ldots \cdot\left(1+1 / 2^{n}\right)<3
$$

for every natural number n.
2) Let a, b, c be non-negative real numbers. Show that

$$
(a+b)(b+c)(c+a) \geq 8 a b c
$$

3) Prove that any two numbers of the following sequence are relatively prime:

$$
2+1,2^{2}+1,2^{4}+1, \ldots, 2^{2^{n}}+1
$$

Remark: The result obtained here proves that there is an infinite number of primes.
4) Prove that any positive rational number r can be represented as a finite sum of rationals of the form $1 / k$ with distinct denominators.
5) Does there exist a continuous function f on \mathbb{R} such that $f(f(x))=e^{-x}, x \in \mathbb{R}$?
6) Denote by $[x]$ the integer part of x. Prove that for any natural number n, the integer $\left[(2+\sqrt{3})^{n}\right]$ is odd.

