Hoja de Verano-2019

1) Suppose that a sequence a_1, a_2, \cdots of positive real numbers satisfies

$$a_{k+1} \ge \frac{ka_k}{a_k^2 + (k-1)}$$

for every positive integer k. Prove that $a_1 + a_2 + \cdots + a_n \ge n$ for every $n \ge 2$.

- 2) Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms.
- (a) If the series diverges, prove that there exists a sequence $\{c_n\}$ monotonically decreasing to 0 such that $\sum_{n=1}^{\infty} a_n c_n$ also diverges.
- (b) If the series converges, prove that there exists a sequence $\{c_n\}$ monotonically increasing to infinity such that $\sum_{n=1}^{\infty} a_n c_n$ also converges.
 - 3) For any square matrix A, we can define $\sin A$ by the usual power series:

$$\sin A = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} A^{2n+1}.$$

Prove or disprove: there exists a 2×2 matrix A with real entries such that

$$\sin A = \left(\begin{array}{cc} 1 & 1996 \\ 0 & 1 \end{array}\right).$$

- 4) Prove that $(5^{125} 1)/(5^{25} 1)$ is composite.
- **5)** For every positive integer k, find the smallest n such that $2^k|5^n-1$.
- 6) There are infinitely many powers of 2 in the sequence $|n\sqrt{2}|$.
- 7) Prove that there exist infinitely many triples of integers x, y, z such that the numbers x(x+1), y(y+1), z(z+1) form an increasing arithmetic progression.
 - 8) Evaluate the integral

$$\int_0^1 \int_0^1 \frac{1}{1 - xy} \, dx \, dy.$$

9) What is the maximal value of

$$|ax + ay + bx - by|$$

over the 4-dimensional "cube" $|a| \le 1$, $|b| \le 1$, $|x| \le 1$, $|y| \le 1$? Consider separately the cases of real and of complex parameters.