Hoja 5

1) Prove that every nonnegative integer can be represented in the form $a^{2}+b^{2}-c^{2}$, where a, b and c are positive integers with $a<b<c$.
2) Prove that there does not exist a non-constant polynomial with integral coefficients such that $P(0), P(1), P(2), \ldots$ are all prime numbers.
3) Consider the polynomial $f(X):=X^{2}-4$, with $a \in \mathbb{Z}$. Let $f^{(n)}=f \circ \cdots \circ f$ be its nth iterate and let $c_{n}=f^{(n)}(0)$. Prove that if p is an odd prime such that $p \mid\left(c_{n}+2\right)$ for some n, then $p \nmid\left(c_{m}-2\right)$ for all m.
4) Prove that the equation $p^{2}+q^{2}=r^{2}+s^{2}+t^{2}$ has no solution with primes p, q, r, s, t.
5) Call a real-valued function f very convex if

$$
\frac{f(x)+f(y)}{2} \geq f\left(\frac{x+y}{2}\right)+|x-y|
$$

holds for all real numbers x and y. Prove that no very convex function exists.
6) Let \mathcal{P}_{n} be the set of subsets of $\{1,2, \ldots, n\}$. Let $c(n, m)$ be the number of functions $f: \mathcal{P}_{n} \rightarrow\{1,2, \ldots, m\}$ such that $f(A \cap B)=\min \{f(A), f(B)\}$. Prove that

$$
c(n, m)=\sum_{j=1}^{m} j^{n} .
$$

7) Given a function $f:[0,1] \rightarrow \mathbb{R}$, we associate with it the set

$$
E(f)=\left\{x \in[0,1]: \lim _{t \rightarrow x} f(t)=+\infty\right\}
$$

Is it true that for any $f, E(f)$ is (at most) countable?
8). Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive numbers and let s be their sum. Prove that

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right) \leq 1+s+\frac{s^{2}}{2!}+\frac{s^{3}}{3!}+\cdots+\frac{s^{n}}{n!}
$$

9) Show that for any natural number n, there exist infinitely many positive Fibonacci numbers divisible by n.
